Ученые Санкт-Петербургского государственного университета и Казанского национального исследовательского технического университета создали прибор для анализа газов, который объединил в себе функции хроматографа и плазменного детектора. Результаты исследования опубликованы в научном журнале High Energy Chemistry.
На сегодняшний день есть два основных типа газоанализаторов, позволяющих измерять концентрации веществ в тех или иных средах. К первому типу относятся хроматографы, в основе которых лежит метод распределения веществ между двумя фазами — неподвижной (твердая фаза) и подвижной (газовая или жидкая фаза). Эти устройства используются для изучения состава газовых сред, включая определение спиртов, сероводорода и неорганических соединений (азота, кислорода, водорода, оксида и диоксида углерода).
Вторым типом устройств являются детекторы, которые анализируют состав веществ путем изучения характеристик электронов, высвобождаемых из атомов или молекул под действием плазмы. Этот подход основан на уникальных энергетических уровнях каждого элемента, включая энергию ионизации: он позволяет определять химический состав образца с помощью анализа спектра энергии высвобожденных электронов.
Авторы исследования объединили детектор и хроматограф в единый аналитический инструмент. «В ходе экспериментов мы продемонстрировали возможность расширения применения плазменной электронной спектроскопии для определения состава газовых смесей на примере He+CH4(600 ppm)+N2+O2 (700 ppm) — смеси гелия, метана, азота и кислорода», — цитирует Санкт-Петербургский университет ассистента кафедры оптики, спектроскопии и физики плазмы СПбГУ Сергея Сысоева.
В сложных смесях некоторые компоненты могут обладать схожими физическими или химическими свойствами, что затрудняет их деление. Например, сигналы от двух различных газов могут перекрываться на энергетической шкале, и традиционные методы не всегда способны их различить. Новый прибор улучшает разделение и идентификацию за счет добавления временной координаты к анализу. Устройство сначала разделяет смесь на отдельные компоненты, а затем анализирует их по химическим и физическим свойствам, учитывая при этом время прохождения через систему.
Тем самым, анализ проводится как по временной, так и по энергетической шкале, что повышает точность измерений.