Ученые из Санкт-Петербургского государственного университета (СПбГУ) и Омского научного центра Сибирского отделения РАН создали композитный материал из многослойных углеродных нанотрубок, оксида марганца и рения. Этот материал позволит повысить энергоэффективность суперконденсаторов, используемых в альтернативной энергетике.
Результаты исследования опубликованы в швейцарском научном журнале Applied Sciences.
Углеродные нанотрубки — перспективный материал, представляющий собой углеродную цилиндрическую структуру, созданную из графена (углеродной решетки).
Нанотрубки отличаются высокой прочностью и плотностью, при этом их толщина менее человеческого волоса.
При добавлении небольших объемов вещества (1–3% от общего объема) в определенную среду нанотрубки способны значительно улучшать характеристики этой среды.
Ранее уже проводились эксперименты по добавлению нанотрубок в дорожное покрытие, автомобильные покрышки, литий-ионные аккумуляторы и даже в бумагу.
В результате вещество становилось более прочным и эффективным.
Нанотрубки бывают одностенные и многослойные.
Одностенные имеют одномерную структуру, а многослойные состоят из нескольких концентрически связанных углеродных нанотрубок.
Они могут быть длиной всего несколько микрометров с диаметром менее 100 нанометров (в одном сантиметре 10 млн нанометров).
Многослойные нанотрубки лучше проводят ток, а их поверхность химически инертна, т. е. не позволяет запускать какие-либо реакции.
Все это позволяет предположить, что многослойные нанотрубки — наиболее выгодное вещество для использования при производстве суперконденсаторов, литий-ионных аккумуляторов и других элементов.
Ученые СПбГУ разработали новые способы повышения эффективности суперконденсаторов за счет использования комбинации многослойных нанотрубок и оксидов переходных металлов.
Один из подходов — увеличение площади поверхности, обеспечивающей энергетическую эффективность электрода.
Обычно в качестве основы электродов промышленных суперконденсаторов используют различные виды углерода (сажа, активированный углерод, технический углерод, графен, углеродные нанотрубки и другие варианты), обладающие высокой удельной площадью поверхности.
В последнее время для повышения энергоэффективности и стабильности суперконденсаторов ученые разрабатывают гибридные материалы, которые накапливают энергию как за счет двойного электрического слоя, так и благодаря обратимым электрохимическим процессам, протекающим на поверхности электродов при наличии, например, оксидов переходных металлов (оксиды кобальта, ванадия, рутения и др.).
Особое внимание ученых привлекают оксиды марганца, обладающие высокой удельной емкостью, низкой токсичностью и себестоимостью производства.
Ученые создали композитный материал на основе многослойных углеродных нанотрубок и оксида марганца с добавкой тяжелого металла рения. Этот материал отличается высокими показатели емкости — накапливаемого заряда на единицу массы. Именно этот показатель характеризует эффективность таких материалов.
Во время эксперимента ученые наносили на поверхность нанотрубок слои оксида марганца, затем проводили температурные обработки для кристаллизации и формирования наночастиц.
Это позволило увеличить удельную емкость более чем в 2 раза, однако данный показатель быстро снижался.
Повысить электрохимические свойства удалось за счет подбора оптимальной температуры обработки композита и последующего добавления оксида тяжелого метала рения, имеющего несколько степеней окисления, как и марганец.
Как показали эксперименты, оксид рения закреплялся преимущественно вблизи наночастиц марганца и позволил увеличить долю электрохимически активного оксида марганца MnO2 путем доокисления MnOх.
Благодаря этому ученым удалось сделать материал более стабильным при циклических испытаниях заряда-разряда.
Такой эффект получился благодаря синергетическому эффекту, достигаемому за счет сочетания свойств оксидов марганца и рения, а также углеродных нанотрубок.
С одной стороны, это приводит к увеличению вклада обратимых электрохимических процессов в удельную емкость, с другой — позволяет заметно увеличить вклад двойного электрического слоя при накоплении заряда.
Полученные учеными СПбГУ результаты позволят значительно повысить эффективность источников импульсной мощности, которые генерируют большое количество энергии в короткий срок.
Сегодня суперконденсаторы используются в альтернативной энергетике, транспортных системах, накопителях энергии в домашних хозяйствах и других отраслях науки и техники.
Повышение их энергоэффективности важно для многих сфер, поскольку генерация мощного импульса энергии — главная задача суперконденсаторов.