Парадоксы отечественной теплоэнергетики Стыдно признаться, но более 90% специалистов — теплоэнергетиков не знает, что такое и зачем нужны тепловые насосы. В Японии ежегодно производится около 3 млн. тепловых насосов, в США — около 1 млн. В Германии предусмотрена дотация в 400 марок за каждый кВт установленной мощности тепловых насосов. В Новосибирске на практически единственном в России предприятии “Энергия”, производящем крупные тепловые насосы, за 10 лет выпущено порядка сотни промышленных тепловых насосов. Парадокс! За рубежом выгодно использовать низкопотенциальное тепло, а в России, в стране холода, проще построить котельную, чем использовать сбросные низкопотенциальные источники тепла! Парадокс 2. Энергии сбросного тепла, поступающего на градирни омских ТЭЦ, достаточно, чтобы остановить в резерв все, даже самые крупные котельные города, при понижении температуры наружного воздуха до –8°С! Но почему-то даже зимой, когда из градирен ТЭЦ выбрасывается огромное количество тепла, в зоне действия тепловых сетей работают десятки котельных, нагрузку которых могут взять на себя ТЭЦ. Потери топлива от неумения организовать совместное потребление сбросной энергии от ТЭЦ различными собственниками котельных по Омску составляет не менее 630 тыс. т.у.т/год на сумму до 200–800 млн. рублей в год. Парадокс 3. В российской теплоэнергетической системе “ТЭЦ — тепловой потребитель” получается замкнутый круг, тепловые насосы не применяются, потому что на них нет спроса, а с другой стороны нет предложений, потому что нет спроса. Есть сбросное тепло в градирни, есть невостребованные тепловые мощности (которые замещаются местными котельными, в зоне действия ТЭЦ), есть возможные технические решения, но нет экономической выгоды! Почему? Суть в том, что сбросное тепло от ТЭЦ продается по цене тепла, получаемого от котельной! Конечно, с таким уровнем цен никакой тепловой насос не будет конкурентоспособен. Все вышеперечисленные парадоксы являются следствием того, что до настоящего времени нет логически обоснованного метода анализа затрат на производство энергии как на специфичный вид материи, качественно отличающейся от других товаров неразрывностью по времени производства и потребления энергии. Существующий технико-экономический анализ работы ТЭЦ совершенно не отвечает технологии производства низкопотенциального сбросного тепла и электрической энергии. Метод ценообразования на сбросное тепло необходимо пересматривать. Ответы на эти и многие другие парадоксы в энергетике кроются в абсурдности существующего метода ценообразования на энергию, в оторванности тарифной политики от технологии производства тепловой и электрической энергии. История вопроса о том, как правильно оценивать стоимость тепловой и электрической энергии, наглядно отражена в [1-5]. Методологические недостатки отечественной тарифной политики В существующей тарифной политике на тепловую и электрическую энергию заложено 6 видов логических ошибок, определяющих недостатки сегодняшней тарифной политики применительно к “энергетике крупного города”. 1. Мы пытаемся одной мерой оценить стоимость двух различных видов энергетической продукции: а) мощности во времени предоставляемой тепловой и электрической энергии; б) количества за период отпущенной тепловой и электрической энергии. 2. Отсутствует (неразвита) система классификации видов энергетической продукции по качеству, количеству. 3. Отсутствуют (неразвит) принцип авансирования затрат на соответствующий вид энергетической продукции. 4. При комбинированном производстве тепловой и электрической энергии на ТЭЦ принятый на сегодня метод разделения затрат топлива на тепловую и электрическую энергию не отвечает технологии производства энергии на ТЭЦ. 5. Мы не стимулируем экономичного потребителя за комбинированное потребление тепловой и электрической энергии, получаемой по комбинированному способу на ТЭЦ, а также не принуждаем неэкономичного потребителя к изменению технологии потребления энергии (мы вынуждены принуждать все общество). 6. Мы не осуществляем анализ и нормирование расходов топлива, закладываемых в тарифы для конкретного типа потребителей тепловой и электрической энергии. Самым главным недостатком существующей тарифной политики является то, что тарифы не отражают технологическую суть производства энергии как по качеству, так и по количеству. Предметом рыночных отношений является не просто количество потребленной энергии, а предоставление мощности в определенное временя. На рынок энергетических услуг предоставляется два вида энергетической продукции: а) возможность использования заявленной энергетической мощности в определенное время; б) количество потребленной энергии. При этом методологически нет никакой принципиальной разницы, на какой вид энергии предоставляются услуги — тепловую или электрическую. Недостаток существующего ценообразования заключается в том, что цена не отражает качества энергии. Если для электроэнергии разработан государственный стандарт, то, как ни парадоксально, мы находимся только на пороге формирования требований к качеству производства и продажи тепловой энергии. Согласно требованиям Гражданского кодекса, поставлены и сформулированы задачи по определению качества и надежности теплоснабжения. Так, если для котельной нет принципиальной разницы, когда производится тепло — летом или зимой, — то для ТЭЦ это различные технологии. Если летом для горячего водоснабжения можно использовать бросовое тепло, поступающее на градирни ТЭЦ, то зимой для отопления жилья отработанного тепла уже не хватает, и необходимо затрачивать дополнительные первичные источники энергии. Если же летом тепло от ТЭЦ не купят, то она все равно это тепло выбросит в окружающую среду или же просто остановится в вынужденный резерв из-за отсутствия теплового потребления. Одна из основных ошибок существующего метода ценообразования заключается в том, что для простоты калькуляции рассчитываются не конкретные тарифы для характерных режимов энергоснабжения, а средневзвешенные, среднегодовые тарифы. Хотя среднегодовая цена тепла у ТЭЦ ниже чем у котельной, все равно она не стимулирует промышленных покупателей тепловой энергии пойти на то, чтобы не сжигать топливо на своих котельных и по обоюдовыгодной цене использовать сбросное тепло от ТЭЦ. Абсурдность существующих тарифов заключается и в том, что цена не отражает количество потребленной энергии по времени. Так, при равномерном потреблении 1000 Гкал в течение года достаточно источника тепла с мощностью 0.11 Гкал/час. Для производства этого же количества тепла, требуемого для того, чтобы обеспечить зимний максимум нагрузок за расчетную пятидневку требуется уже 8.3 Гкал/час. Разница мощностей установленного оборудования составляет 73-кратную величину. Соответственно нужны дополнительные специалисты, площади, оборудование. Оборудование находится в резерве 97% времени и работает только 3% времени, а стоимость покупки энергии одинакова в обоих случаях! Но для общества нет никакой разницы в оплате затрат! Парадокс! Область применения тепловых насосов в системе теплофикации Законодателям, определяющим энергетическую стратегию региона, необходимо полностью отказаться от услуг так называемого “физического метода” распределения экономии топлива и перейти на применение “эксергетического метода” анализа. Методические указания по составлению отчета электростанции о тепловой экономичности оборудования должны быть пересмотрены и должны отвечать технологической сути комбинированного производства энергии. Вместо расчетного расхода топлива на тепло по существующей методике 120-170 кг/Гкал реальный расход топлива, к примеру, определенный по диаграммам режимов турбин Т-175/210 Омской ТЭЦ-5, составляет: Главным выводом из приведенной таблицы является то, что чем ниже температура сетевой воды, используемой тепловым потребителем, тем меньше требуется топлива на ТЭЦ для его дополнительного производства как тепловой, так и электрической энергии. Низкотемпературное тепло на уровне 45°С как раз и является той экономической нишей, где применение тепловых насосов технически и экономически выгодно. Не надо строить дополнительных теплообменников для забора тепла из систем охлаждения конденсаторов! Достаточно забирать это тепло непосредственно в центре тепловых потребителей из обратной сетевой воды, “захолаживая” обратную сетевую воду от 45–70°С до температуры +10°С. Цена на это тепло должна зависеть от числа часов использования сбросного тепла. Если же это тепло не будет забираться в часы максимума тепловых нагрузок, то цена должна быть в 10–20 раз ниже цены пикового тепла (см. график). Тепловые насосы и теплофикация являются взаимно исключающими и взаимно дополняющими энергосберегающими технологиями. Теплофикация является более эффективным технологическим решением, чем тепловые насосы. Применять тепловые насосы непосредственно на ТЭЦ, ГРЭС, где имеются круглогодичные сбросы тепла в градирни, пруды охладители, нет никакого смысла. Греть воду, получать пар необходимых параметров необходимо производить непосредственно с отборов паровых турбин, без сложной трансформации тепла с помощью тепловых насосов. Однако, если на ТЭЦ имеются сбросы тепла в атмосферу или водоем, то можно применять тепловой насос для сверхбалансовой нагрузки, непосредственно забирая тепло из обратной сетевой воды у удаленного потребителя по цене сбросного тепла. Это означает, что, если на ТЭЦ имеется сбалансированная тепловая и электрическая нагрузка, то область применения тепловых насосов возможно только в те периоды, когда нет пиковых нагрузок. Для условий г. Омска этот внепиковый период времени составляет порядка 7000–7500 часов. Экономическая ниша в схеме балансов тепловой и электрической энергии на ТЭЦ позволяет сделать технологический прорыв в применении тепловых насосов в “Энергетике крупного города”. Так, с применением тепловых насосов можно и нужно:
-
значительно расширить область комбинированного производства и комбинированного потребления тепловой и электрической энергии;
-
пересмотреть концепцию теплоснабжения населения городов: а) базовая низкотемпературная нагрузка до 115°С — от теплофикационных отборов ТЭЦ; б) пиковая нагрузка — от пиковых котельных, абсорбционных тепловых насосов, компрессионных тепловых насосов, находящихся в центре тепловых нагрузок;
-
применять низкотемпературный транспорт базовой нагрузки тепловых сетей по графику: для полубазовых нагрузок ТЭЦ — 65–10°С, для пиковых нагрузок ТЭЦ — 115–10°С, для пиковых нагрузок тепловых сетей — количественно — и качественное регулирование;
-
использовать полиэтиленовые трубы для невысоких температур до 95°С и невысоких давлений до 0.6 Мпа;
-
примененять трехтрубные системы: две трубы — отопление, третья труба — только для горячего водоснабжения;
-
получать пар из сетевой воды и закрыть сотню низкоэффективных паровых котельных.