Особого внимания заслуживают два показателя: задержка метастазирования и потеря веса животных за время экспериментов. Ярко выраженное стимулирующее действие «легкой» воды на иммунную систему животных привело к задержке развития метастазов на 40 % по сравнению с контрольной группой, а потеря массы у животных, которые пили «легкую» воду, к концу опыта была в два раза меньше.
При воздействии на подопытных животных γ-облучением в дозе LD50 обнаружено, что выживаемость животных, употреблявших в течение 15 дней перед облучением «легкую» воду (30 ppm), в 2,5 раза выше, чем в контрольной группе (доза облучения 850 R), что указывает на радиопротекторные свойства «легкой» воды. При этом у выживших мышей опытной группы количество лейкоцитов и эритроцитов в крови осталось в пределах нормы, в то время как в контрольной группе оно значительно сократилось.
Было отмечено также четкое положительное влияние воды на показатели насыщения тканей печени кислородом: при этом увеличение величины рО2 составляло 15 %, то есть дыхание клеток увеличивалось в 1,3 раза. О полезном действии реликтовой воды на здоровье мышей свидетельствовала их повышенная резистентность и увеличение веса по сравнению с контролем. Это значит, что употребление «легкой» воды для жителей больших городов в условиях повышенного фона радиации обосновано.
«Легкая» вода увеличивает скорость метаболических реакций, например, при старении, метаболическом синдроме, диабете и т.п. [22]. Кроме этого, согласно данным предварительных исследований, в пробах «легкой» воды сперматозоиды несколько дольше сохраняли свою функциональную активность, которая повышается по мере снижения содержания дейтерия в воде. Если принять во внимание общеизвестный факт о том, что воспроизводство жизни связано с потенциалом жизнедеятельности половых клеток, то станет ясно значение реликтовой воды для будущих поколений. Данные факты способствуют разработке промышленных установок для извлечения тяжелых изотопов из воды.
«Легкая» вода увеличивает скорость метаболических реакций, например, при старении, метаболическом синдроме и т.п. Согласно данным предварительных исследований, в пробах «легкой» воды сперматозоиды несколько дольше сохраняли свою функциональную активность
Установки разделения тяжелых изотопов
В настоящее время существует несколько способов извлечения тяжелых изотопов из воды: изотопный обмен в присутствии палладия и платины, электролиз воды в сочетании с каталитическим изотопным обменом между водой и водородом, колоночная ректификация, вакуумное замораживание холодного пара с последующим оттаиванием и др. [23]. В способе получения обедненной дейтерием питьевой воды за счет замораживания-оттаивания льда получение льда осуществляют замораживанием пара, образующегося из исходной воды при температуре, не превышающей +10 °C, а в процессе оттаивания льда на него дополнительно воздействуют ультрафиолетовым и инфракрасным излучениями и насыщают талую воду газом или смесью газов.
При смешивании «легкой» (Н2О) и тяжелой (D2O + T2O) воды происходит изотопный обмен: Н2О + D2O = 2 НDO; H2O + T2O = 2 НТО. Поэтому дейтерий и тритий в обычной воде находятся в форме HDO и НТО. При этом температура замерзания для D2O составляет +3,8 °С, а для Т2О +9 °С, HDO и НТО замерзают соответственно при +1,9 °С и при +4,5 °С. Установлено, что при температуре в пределах от 0 до +1,9 °С молекулы воды с дейтерием и тритием, в отличие от «легкой» (протиевой) воды, находятся в метастабильно-твердом неактивном состоянии.
Это свойство лежит в основе фракционного разделения «легкой» и тяжелой воды путем создания разряжения воздуха над поверхностью воды при этой температуре. «Легкая» вода интенсивно испаряется, а затем улавливается при помощи морозильного устройства, превращаясь в лед. «Тяжелая» же вода, находясь в неактивном твердом состоянии и обладая значительно меньшим парциальным давлением, остается в испарительной емкости исходной воды вместе с растворенными в воде солями и примесями.
На этом принципе работает сконструированная Г.Д. Бердышевым и И.Н. Варнавским совместно с Институтом экспериментальной патологии, онкологии и радиобиологии имени Р. Кавецкого РАН Украины промышленная установка ВИН-4 «Надiя» по производству «легкой» воды с пониженным на 30-35 % содержанием дейтерия и трития (рис. 2).
Установка состоит из корпуса 1, в котором установлена испарительная емкость 2 для исходной воды с устройствами нагрева 3 и охлаждения воды 4. Здесь же имеется вентиль 5 для подачи воды в испаритель и вентиль 6 для слива отработанного остатка, обогащенного тяжелыми изотопами водорода. В корпусе также расположено устройство 7 для конденсации и замораживания холодного пара в виде набора тонкостенных трубчатых элементов, которые соединены с насосом для прокачивания через них хладагента. Устройство 7 совместно с источниками ультрафиолетового 8 и инфракрасного 9 излучений размещено над емкостью 10 для сбора талой воды. Внутренняя полость корпуса 1 соединена патрубком 11 с вакуумным насосом — источником разряжения воздуха. Кроме того, корпус 1 снабжен устройством 12 для подачи в его внутреннюю полость установки очищенного воздуха или смеси газов. Дополнительно установка ВИН-4 оборудована системой терморегулирования в полости испарительной емкости 2 для контроля заданной температуры процесса испарения исходной обрабатываемой воды. В корпусе имеются иллюминаторы 13 и 14 для наблюдения за процессами испарения, замораживания холодного пара и таяния льда. Емкость сбора талой воды 10 снабжена вентилями 15 для слива талой воды и патрубком 16 для соединения с блоком формирования структуры и свойств талой воды 17. Блок 17 включает внутреннюю коническую емкость 18 с минералами. На выходе емкости 19 установлен адсорбционный фильтр 20 и сливной вентиль 21.
Установлено, что при температуре в пределах от 0 до +1,9 °С молекулы воды с дейтерием и тритием, в отличие от «легкой» воды, находятся в метастабильно-твердом неактивном состоянии
Установка работает следующим образом. Из водопровода испарительную емкость 2 наполняют водой и через устройство 4 прокачивают хладагент. При достижении заданной температуры, не превышающей +10 °С, процесс охлаждения воды прекращают. Затем герметизируют корпус 1 и через патрубок 11 начинают откачивать воздух, создавая разряжение во внутреннем объеме корпуса установки. Создание разряжения сопровождается сначала интенсивным выделением из всего объема исходной воды растворенных в ней газов и их удаление, а затем интенсивным парообразованием вплоть до кипения воды, за которым наблюдают через иллюминаторы 13 и 14. Образующийся холодный пар конденсируется и намерзает на поверхности трубчатых элементов морозильника 7. Когда толщина льда достигает заранее заданной величины, процесс испарения прекращают. Вакуумный насос выключают, включают источники ультрафиолетового 8 и инфракрасного 9 излучений, а через устройство 12 вводят в полость корпуса 1 очищенный воздух или смесь газов; затем доводят давление в корпусе 1 до уровня или выше атмосферного. Остаток воды емкости 2, обогащенный тяжелыми изотопами, через вентиль 6 сливают в отдельные емкости или сливают в накопитель. По мере облучения и таяния льда талая вода поступает в емкость 10, затем в блок 17 формирования структуры и свойств талой воды. Проходя через минералы внутренней 18 и наружной 19 конических емкостей и далее через фильтр 20, талая вода завершает свой путь, приобретая целебные биологически активные свойства.
Подобную установку по получению биологически активной питьевой воды с пониженным содержанием дейтерия путем электролиза сконструировали в 2000 году российские ученые Ю.Е. Синяк, В.Б. Гайдадымов и А.И. Григорьев из Института медико-биологических проблем (рис. 3). Установка содержит емкость 1 с конденсатом атмосферной влаги или дистиллятом, которая соединена с анодной камерой 2 электролизера с ионообменным электролитом. Электролизер содержит пористые электроды (анод 2 и катод 3) из титана, покрытые платиной, преобразователь электролизных газов в воду, конденсатор 10 и сборник «легкой» воды. Кроме того, устройство дополнительно снабжено осушителем кислорода 4, реактором изотопного D2/H2O обмена 5, внешние боковые стенки которых образованы из ионообменных мембран, и кондиционером для воды 11. Внешние стенки реактора 5 и осушителя 4 образованы из ионообменных мембран 6, 8; осушитель кислорода содержит ионообменный катионит, а кондиционер для воды 11, в свою очередь, образован из фильтра со смешанными слоями ионообменных материалов — адсорбента и минерализатора, содержащего гранулированные кальций-магний карбонатные материалы.
Конденсат атмосферной влаги или дистиллят поступает в анодную камеру электролизера с твердым электролитом, где осуществляется процесс электролиза при температуре 60-80 °C. Образующиеся в результате электролиза обедненные дейтерием газообразные водород и кислород с парами воды подают в осушитель кислорода 4, где происходит сушка за счет сорбции паров воды ионообменным наполнителем (катионитом) и прохождения через ионообменные мембраны 6. Затем высушенный электролизный водород подается в каталитический реактор изотопного обмена 5, где он подвергается изотопному D2/H2O обмену с парами воды и водородом на катализаторе, состоящим из активированного угля с добавками 4-10 % фторопласта и 2-4 °% палладия или платины. После изотопного D2/H2O обмена водород осушают от паров воды (D2O), которые сорбируются и удаляются через ионообменники реактора 8, размещенные на его внешних боковых стенках. Осушенные газы поступают в преобразователь электролизных газов и в каталитическую горелку 9. Пламя факела направляют в конденсатор 10, охлаждаемый в протоке водопроводной водой, где пары воды конденсируются и поступают в кондиционер 11 для доочистки на сорбционном фильтре. Затем вода поступает в сборник воды, обедненной дейтерием 12. Охлаждение устройства и работа ионообменных мембран по осушке электролизных газов от паров воды осуществляется вентилятором 7. Окончательную доочистку воды и последующую ее минерализацию проводят кальций-магнийсодержащими карбонатными минералами и доломитом. Производительность установки по «легкой» воде составляет 50 мл воды в час.
При вакуумном замораживании-оттаивании получают микроминерализованную питьевую воду со сниженным содержанием дейтерия на 10-35 % и с упорядоченной льдоподобной структурой, характерной талой воде
При электролизном процессе у воды с пониженным на 60 % и выше содержанием дейтерия сохраняются негативные свойства дистиллированной воды (отсутствие минерализации, повышенное содержание растворенных газов, неупорядоченная молекулярная структура воды). Она является исходным материалом для получения питьевой воды космонавтов. Преимуществом электролизного процесса является максимально возможное удаление дейтерия (до 90 °%).
При вакуумном замораживании-оттаивании получают микроминерализованную питьевую воду со сниженным содержанием дейтерия на 10-35 % и с упорядоченной льдоподобной структурой, характерной талой воде. Поэтому предпочтение отдается этому способу получения «легкой» воды.
Разработанные в последние годы комбинированные методы изотопного обмена и ректификации позволяют получать «легкую» воду высокой изотопной чистоты. Первая в мире ректификационная установка по изотопной очистке воды была спроектирована в 1975 году швейцарской фирмой Sulzer и пущена в эксплуатацию на реакторе HFR ILL. В 1987 году аналогичная, но гораздо более мощная установка была создана в Канаде для канадских АЭС.
В конце 1990-х годах в Петербургском институте ядерной физики имени Б.П. Константинова была создана первая отечественная ректификационная колонна по изотопному разделению воды. Высота колонны — 10 м, диаметр — 80 мм. В основу этой установки заложен комбинированный метод изотопного обмена в системе «пары воды-водород» и низкотемпературной ректификации изотопов водорода.
В ходе реакции каталитического изотопного обмена (КОИ) между парами воды и дейтерием при температуре 200 °С происходит извлечение протия и трития из «тяжелой» воды и их последующий перевод в газообразную фазу:
DOT + D2 = DT + D2O,
HDO + D2 = DH + D2O.
Степень извлечения трития из «тяжелой» воды определяется константой равновесия и при трехступенчатой очистке составляет не более 30 °%. Очищенная от протия и трития «тяжелая» вода возвращается в реактор. Смесь изотопов водорода D2, DT, HD после очистки от примесей и охлаждения до температуры 25 K подается в низкотемпературную колонну. За счет процессов массообмена между газообразной и жидкой фазой изотопов водорода происходит концентрирование трития в нижней, а протия — в верхней части колонны. Обедненный по протию и тритию поток дейтерия в виде D2O возвращается в блок КИО. Из верхней части низкотемпературной колонны происходит отбор концентрата протия в виде «легкой» воды, а из нижней — концентрат трития в виде тритиевой воды.
Ректификация воды относится к массообменным процессам и осуществляется в противоточных колонных аппаратах с контактными элементами — насадками или тарелками. В этом процессе происходит непрерывный обмен между движущимся относительно друг друга молекулами жидкой и паровой водяной фазы. При этом жидкая фаза обогащается более высококипящим компонентом, а паровая фаза — более низкокипящим дейтерием и другими тяжелыми изотопами — тритием (Т) и кислородом (18О).
В большинстве случаев ректификацию осуществляют в противоточных колонных аппаратах с различными контактными элементами
В большинстве случаев ректификацию осуществляют в противоточных колонных аппаратах с различными контактными элементами (рис. 4). Процесс массообмена происходит по всей высоте колонны между стекающей вниз флегмой и поднимающимся вверх паром. Чтобы интенсифицировать процесс массообмена, применяют насадки и тарелки, что позволяет увеличить поверхность массообмена. В случае применения насадки жидкость стекает тонкой пленкой по ее поверхности, в случае применения тарелок пар проходит через слой жидкости на поверхности тарелок.
Расчет ректификационной колонны производится по диаграмме кипения воды для заданных параметров ректификации — состава исходной воды, кубового остатка, дистиллята, производительности и рабочем давлении в колонне. Затем подбирается тип и количество тарелок, определяется скорость движения пара, диаметр колонны, коэффициенты массопередачи, высота колонны, гидравлическое сопротивление тарелок. После этого проводится расчет эксплуатационных свойств, а также экономические показатели использования ректификационной колонны. На практике для более глубокой очистки воды от тяжелых изотопов используется не одна ректификационная колонна, а батарея из десяти и более отдельных колонн (до 20).
Данный метод изотопного разделения воды имеет ряд существенных преимуществ по сравнению с существующими способами и позволяет производить очистку природной воды от дейтерия до величин порядка 20-30 ppm. Кроме того, производительность изотопной очистки воды этим методом выше других способов, что существенно снижает ее стоимость. Предполагается, что при широкомасштабном производстве «легкой» воды в будущем она станет доступной каждому человеку.
В последнее время на отечественном рынке появилась «легкая» питьевая вода «Лангвей», которая производится методом колоночной ректификации с различным остаточным содержанием дейтерия (от 125 до 50 ppm) (табл. 3).
На основании клинических испытаний, проведенных в Российском научном центре восстановительной медицины и курортологии и в Институте красоты, «легкая» питьевая вода «Лангвей» рекомендована для нормализации углеводного и липидного обмена, артериального давления, коррекции веса, улучшения работы желудочно-кишечного тракта, увеличения скорости водообмена и выведения шлаков и токсинов из организма [19].
Основное воздействие «легкой» воды на организм объясняется постепенным снижением содержания дейтерия в физиологических жидкостях тела за счет реакций изотопного H-D-обмена. Анализ полученных результатов может свидетельствовать о том, что очистка воды организма от «тяжелой» воды с помощью «легкой» питьевой воды позволяет улучшить работу некоторых жизненно-важных систем организма. При регулярном потреблении «легкой» воды происходит более полная очистка всего организма от «тяжелой» воды за счет реакций изотопного H-D-обмена в физиологических жидкостях, а также зафиксировано изменение изотопного состава мочи и содержание в ней кальция. Ежедневное употребление «легкой» питьевой воды позволяет естественным образом снизить содержание «тяжелой» воды в организме человека за счет реакций изотопного H-D-обмена. Этот процесс сопровождается увеличением функциональной активности клеток, органов и некоторых систем организма. При этом происходит нормализация обменных процессов, увеличиваются защитные силы и устойчивость организма к внешним неблагоприятным воздействиям.
Регулярное употребление «легкой» питьевой воды позволяет естественным образом снизить содержание «тяжелой» воды в организме человека до величины 111 ppm. Это оказывает благоприятное воздействие на обмен веществ, улучшает самочувствие, повышает работоспособность, а также способствует быстрому восстановлению организма после больших физических нагрузок.
Положительные свойства «легкой» питьевой воды подтверждены исследованиями и клиническими испытаниями. Показано, что «легкая» вода нормализует обмен веществ и артериальное давление, снижает содержание сахара в крови у больных сахарным диабетом II-го типа, очищает организм от токсинов и шлаков, способствует быстрому заживлению и восстановлению костных и мышечных тканей после травм, обладает противовоспалительным действием, усиливает действие лекарственных препаратов, способствует коррекции веса, защищает клетки от радиации, устраняет признаки посталкогольной абстиненции. «Легкая» вода также рекомендуется для быстрой и глубокой очистки организма, что необходимо при нарушениях обменных процессов, перед операцией и в послеоперационный период, а также при лечении опухолевых заболеваний.
«Легкая» вода нормализует обмен веществ и артериальное давление, снижает содержание сахара, очищает организм от токсинов и шлаков, способствует быстрому заживлению и восстановлению костных и мышечных тканей после травм, обладает противовоспалительным действием
Клинические испытания «легкой» воды с остаточным содержанием дейтерия 60-100 ppm, проведенные РНЦ восстановительной медицины и курортологии Министерства здравоохранения РФ, показали, что она может быть рекомендована как вспомогательное средство в комплексном лечении больных метаболическим синдромом (артериальная гипертония, ожирение, нарушение углеводного обмена, дислипидемия) и сахарным диабетом.
Кроме того, было обнаружено, что «легкая» вода улучшает качество жизни при почечно-каменной болезни и различных нарушениях в работе желудочно-кишечного тракта (колиты и гастриты). Учитывая динамику распределение воды в организме, реакции изотопного (H/D и 16O/18O) обмена и результаты, полученные на «легкой» воде, можно ожидать, что наибольший эффект изотопная очистка воды будет оказывать на регуляторные системы организма и обмен веществ.
Эффективность воздействия «легкой» воды зависит от многих параметров — массы тела, количества воды в организме, количества ежедневно потребляемой «легкой» воды и степени ее изотопной чистоты. В табл. 4 приведены результаты расчетов изменения содержания дейтерия в организме при регулярном потреблении «легкой» воды с различным остаточным содержанием дейтерия.
Расчет проведен, исходя из следующих данных: суточное потребление «легкой» воды — 1,0 или 1,5 л; суточный водообмен — 2,5 л; содержание дейтерия в организме соответствует его содержанию в природной воде — примерно 150 ppm; объем воды в организме — 45 л (масса тела приблизительно 75 кг).
Исследованные положительные свойства «легкой» воды позволяют говорить о дальнейших перспективах использования «легкой» воды в медицине, быту и пищевой промышленности. В будущем запланированы эксперименты, в которых «легкую воду» будут потреблять космонавты, поскольку для космических полетов особенно важны противорадиационные свойства «легкой» воды.
Заключение
Легкая вода — это сложная по своей структуре и составу изотопная разновидность природной воды, оказывающая полифизиологическое действие на организм человека — противоопухолевое, радиопротекторное и общее оздоравливающее. Основное воздействие, оказываемое «легкой» водой на организм — это постепенное снижение содержания дейтерия за счет реакций изотопного H-D-обмена в физиологических жидкостях. Анализ полученных результатов позволяет говорить о том, что очистка организма от «тяжелой» воды с помощью «легкой» воды позволяет существенно улучшить работу важнейших жизненных систем организма.
Учитывая роль воды в организме, рассчитанные изотопные эффекты «тяжелой» воды и результаты, полученные на «легкой» воде, можно ожидать, что наибольший эффект может сказаться на регуляторных системах, метаболизме и энергетическом аппарате живой клетки, то есть именно тех клеточных системах, которые используют высокую подвижность протонов (D) и высокую скорость разрыва водородных H+ и D- связей. Кроме этого, «легкая» вода обладает меньшей вязкостью, чем «тяжелая» вода, что позволяет ей легче проникать через клеточные мембраны и тем самым регулировать скорость водообмена в организме. Растворимость неорганических солей в легкой воде несколько выше, чем в тяжелой воде, что дает ей возможность более эффективно выводить продукты метаболизма и вредные солевые примеси из организма. Скорость ферментативных (каталитических) реакций в легкой воде несколько выше, чем в обычной воде. Это позволяет интенсифицировать обменные процессы, что помогает организму быстрее восстанавливаться после больших нагрузок. Таким образом, «легкая» вода позволяет естественным образом, без применения каких-либо фармацевтических средств, существенно повысить обменные процессы организма.
>>> Также читайте по теме Бор – пути очистки питьевой воды в журнале СОК 2013 №5