Как известно, в теплое время года, помимо конвективного тепла в помещение поступают большие лучистые тепловые потоки, прежде всего, от солнечной радиации. Если избытки конвективного тепла быстро ассимилируются охлажденным воздухом, то лучистое тепло накапливается в ограждениях, и это приводит к их существенному разогреву. При наличии в помещении развитой поверхности охлаждения она включается в лучистый теплообмен, что приводит к понижению радиационной температуры помещения, а следовательно — улучшению комфортности тепловой обстановки в нем. Необходимость вентилирования помещения, а также осушки внутреннего воздуха в теплое время года и его увлажнения в холодное, предполагает наличие в помещении системы вентиляции. Представляется целесообразным обеспечивать параметры микроклимата в помещении двумя системами: панельно-лучистого отопления-охлаждения (СПЛО) и кондиционирования воздуха (СКВ).В теплое время года система водяного охлаждения работает как фоновая круглосуточно, а воздушная СКВ — только в течение рабочей смены. При этом практически безинерционная СКВ рассчитана на покрытия пиковой холодильной нагрузки. Такое сочетание ощутимо повышает экономическую и энергетическую эффективность обеспечения микроклимата. Известно, что воздушные системы из-за малой плотности воздуха расходуют большое количество электроэнергии на очистку и тепловую обработку воздуха в кондиционерах, а также его транспортировку по вентиляционным каналам. СПЛО снимает существенную часть холодильной нагрузки на СКВ, что позволяет уменьшить расход приточного воздуха в системе, доводя его до санитарной нормы. Так как расход энергии на перемещение замещающего количества воды несопоставимо мал, возникает экономия энергии. Теоретически снижение расхода энергии вентиляторами пропорционально отношению расхода воздуха в кубе. При совместном действии СКВ и СПЛО понижается суммарная установочная холодильная мощность двух систем по сравнению с одной СКВ. Это происходит за счет круглосуточной работы фоновой СПЛО. Уменьшение установочной мощности означает уменьшение стоимости холодильной установки. Следует отметить, что в рассматриваемом варианте не происходит уменьшения суточного расхода холода двумя системами, а наоборот расход увеличивается. Возрастание суточного расхода холода обусловлено снижением радиационной температуры помещения за счет лучистого охлаждения поверхностей, т.е. лучшим качеством микроклимата. Можно избежать этого перерасхода, если повысить температуру воздуха в помещении. При компенсирующем понижении радиационной температуры, компенсирующем повышение температуры воздуха, результирующая температура помещения останется неизменной, а следовательно, не произойдет ухудшения комфортности тепловой обстановки. К перечисленным преимуществам панельно-лучистого охлаждения следует прибавить то, что отопление и частично охлаждение помещения осуществляется одной системой, к тому же имеющей хорошие эксплуатационные качества. Конструктивно системы панельно-лучистого отопления-охлаждения представляют собой греющий/охлаждающий контур из толстостенных пластмассовых труб, заложенных в тело ограждающей конструкции или прикрепленных к ней. Существующие в настоящее время технические средства разрешают конструировать множество схем размещения и устройства трубопроводов в панелях систем отопления-охлаждения. Как правило, системы делятся на потолочные, стеновые и напольные (рис. 1). Для целей охлаждения предпочтение следует отдавать потолочным и стеновым панелям. В отличие от систем панельно-лучистого отопления, использование систем панельного охлаждения не нашло пока достаточного обоснования. Сказанное относится прежде всего к рассмотрению гигиенических аспектов. В достаточно многочисленных исследованиях гигиенистов и инженеров, обобщенных например в [1, 2], приводятся данные оценки комфортности тепловой обстановки применительно к обогреву помещения. В то же время отсутствуют в явном виде сведения о радиационном балансе организма человека при панельно-лучистом охлаждении. Освещая основной вопрос— о допустимой температуре охлажденной поверхности— авторы публикаций рекомендуют принимать ее несколько выше температуры точки росы. Последняя величина может быть определена по приближенной формуле: Tmp = 0,29νв + 0,93tв – 24, °C, где: φ— относительная влажность внутреннего воздуха, %; tв — температура внутреннего воздуха, °С. Формула справедлива в пределах температуры внутреннего воздуха 22–26°С и относительной влажности 40–60%. Проиллюстрируем изложенные выше соображения конкретными примерами. Суточный режим работы фоновой СПЛО совместно с СКВ рассмотрим для офисного помещения площадью 144 м2, работающего 9 ч в сутки (с 9 до 18 ч) в расчетных климатических условиях Москвы. Наружные ограждения ориентированы на юго-запад. В помещении постоянно находятся 50 человек. В течение рабочей части суток в помещении обеспечивается температура воздуха 24°С.Расчеты тепловой нагрузки на системы проведены в соответствии с [3]. На рис. 2 линией 1 показано изменение по часам работы тепловой нагрузки по явному теплу на конвективную систему (СКВ) QC1 для случая работы одной этой системы только в рабочее время (вариант 1). Линии 2–7 на рис. 2 соответствуют варианту 2 совместной работы двух систем: фоновой СПЛО, действующей круглосуточно, и СКВ, работающей только в рабочую смену. Линия 2 показывает изменение тепловой нагрузки QC2 на СКВ в случае, когда холодильная мощность фоновой системы QФ (линия 5 на рис. 2) составляет 10% от средней за смену нагрузки на СКВ в варианте 1 QC1 = –7640 Вт: Линия 3 на рис. 2 соответствует QC2 при соотношении нагрузки QФ = 0,25 (изменение QФ— линия 6), а линия 4 показывает изменение Q
1. Крум Д, Робертс Б. Кондиционирование воздуха и вентиляция. Перевод с англ. Стройиздат, М, 1980. 2. Банхиди М. Тепловой микроклимат помещений. Перевод с венг. Стройиздат, М, 1981. 3. Калмаков А. А, Кувшинов Ю. Я. и др. Автоматика и автоматизация систем теплогазоснабжения и вентиляции. Стройиздат, М, 1986.