Теплоснабжение в России обеспечивают около 485 ТЭЦ, более 190 тыс. котельных и 600 тыс. автономных индивидуальных теплогенераторов [5]. Теплофикация, т.е. совместная выработка электроэнергии и тепла, наиболее выгодна для России. При этом износ основного оборудования ТЭЦ и отопительных котельных по разным оценкам составляет 50–80 %, в аварийном состоянии находятся 25–30 % [6].
Основными причинами плохого состояния теплотрасс являются: низкий уровень изготовления трубопроводов и строительства теплотрасс, отсутствие надлежащего обслуживания и финансирования, разрегулировка тепловых сетей, которая ведет к гидравлическим ударам. Разрегулировка сетей вызывается: неправильным регулированием отпуска тепловой нагрузки, неправильными расчетами при проектировании систем, отключением потребителей из-за завышенных тарифов и т.п.
Можно выделить несколько последствий плохого состояния тепловых трасс. Во-первых, большие тепловые потери при транспортировке тепла, вызванные некачественной тепловой изоляцией трубопроводов, слишком высокими температурами теплоносителя в подающей магистрали и очень низкими температурами наружного воздуха в зимние месяцы, особенно в северных регионах России. Реальные тепловые потери составляют от 20 до 50 % выработки тепла зимой и от 30 до 70 % летом.
Во-вторых, износ сетей ведет к огромным утечкам. Все это ведет к большим энергетическим потерям, что повышает затраты при обслуживании централизованного теплоснабжения [5, 6]. Со времен появления теплофикации проводится большое количество исследований, направленных на повышение качества централизованного теплоснабжения и устранения недостатков проектирования, монтажа и наладки тепловых сетей.
Советские ученые полагали, что целесообразно повышать температуру теплоносителя в подающей магистрали до 200–225 °С. Это позволило бы снизить количество теплоносителя и, как следствие, уменьшить диаметры теплопроводов, облегчить их монтаж, сократить затраты на обслуживание тепловых сетей и на перекачку теплоносителя. В то же время в странах Европы уже применялись теплоносители с повышенными температурными параметрами [1].
На сегодняшний день все больше исследователей сходится во мнении, что температуру теплоносителя следует понижать [2, 3]. Такая тенденция объясняется сложностью поддержания температуры подаваемой воды на заданном уровне, а температурный график в 150/70 °C на сегодняшний день считается неэффективным. Высокая температура в подающем трубопроводе труднодостижима.
Для этого требуется большое количество топлива (что в современных условиях довольно расточительно) и идеальное состояние теплотрасс для сохранения заданной температуры при транспортировке (надлежащая теплоизоляция, исправная запорная и регулирующая арматура, теплопроводы). Высокая температура теплоносителя сегодня избыточна, т.к. теплозащитные свойства зданий со временем повышаются, а деревянные оконные рамы заменяются герметичными пластиковыми стеклопакетами, что приводит к значительному сокращению инфильтрации и к уменьшению количества теплоты на нагрев инфильтрующегося воздуха и воздуха приточной вентиляции, поступающего в помещение при проветривании.
В связи с этим, чтобы снизить тепловой поток, современные проектировщики уменьшают площадь поверхности отопительных приборов, хотя, по условиям комфортности, длина отопительного прибора должна быть соразмерна ширине окна. Радиатор, состоящий из трех-четырех секций, не может обеспечить это соотношение, тепловой поток распределяется в объеме помещения неравномерно и не может перекрыть холодные потоки воздуха, поступающие извне через оконные рамы и при проветривании [3].
Переход на пониженный график теплоснабжения позволяет устранить большую часть указанных проблем. Основное преимущество низкотемпературных систем — низкие тепловые потери через изоляцию благодаря уменьшению разности температур наружного воздуха и теплоносителя. По подсчетам с использованием общепринятых методик [1, 4], потери теплоносителя с температурой 70 °C через неизолированный теплопровод на 44–52 % ниже, чем потери того же количества теплоносителя с температурой 150 °C через теплопровод с соответствующим диаметром.
Такое снижение теплопотерь позволяет существенно сэкономить капиталовложения. При использовании теплоносителя с пониженной температурой, уменьшается износ тепловых сетей и оборудования из-за сокращения разности температуры теплоносителя и наружного воздуха. Так, расчетное тепловое удлинение труб с температурой теплоносителя в 70 °C сократится на 43 %, что позволит облегчить расчет и монтаж компенсаторов, а также уменьшить их размеры.
При выработке теплоты для нужд теплоснабжения на ТЭЦ с понижением температуры теплоносителя также увеличится КПД станции. В этом случае на нагрев теплоносителя можно будет использовать пар с пониженными параметрами из отборов турбин, а количество используемого отобранного пара можно будет либо увеличить, либо эффективнее использовать потенциал пара для выработки электрической энергии.
Наряду со снижением тепловых потерь, износа оборудования и повышения эффективности теплофикации, пониженные параметры теплоносителя, в случае установки стеклопакетов, могут сохранить комфортные условия в помещениях. Чем ниже температура теплоносителя, поступающего в отопительный прибор системы отопления, тем больше становится площадь прибора.
По предварительным подсчетам, при понижении температуры теплоносителя до 70 °C, площадь отопительного прибора может увеличиться до двух раз [3], что положительно повлияет на равномерное распределение теплоты внутри помещения и воспрепятствует проникновению холодных потоков наружного воздуха за счет инфильтрации. Также радиатор с пониженной температурой теплоносителя, а значит и с более низкой температурой поверхности, более удобен при эксплуатации.
Помимо вышеперечисленных достоинств низкотемпературного теплоснабжения, необходимо указать и их недостатки. Так, с уменьшением температуры теплоносителя увеличивается его расход. Горячей воды для теплоснабжения с температурой 70 °C потребуется приблизительно в четыре раза больше, чем горячей воды с температурой 150 °C. Это повлечет за собой увеличение диаметров труб системы теплоснабжения, затруднив их изготовление, прокладку и обслуживание, и повысив, тем самым, капитальные затраты на монтаж, наладку и эксплуатацию сетей теплоснабжения.
По предварительным подсчетам, при больших расходах теплофикационной воды (2000–4500 т/ч), диаметры трубопроводов возрастут, в зависимости от гидравлической увязки, на 30–45 %. При невысоких расходах (в пределах величин 300–1500 т/ч) диаметры трубопроводов увеличатся на 20–30 %. Повышенный расход теплоносителя повлияет и на мощности сетевых насосов, что повысит затраты на электроэнергию.
На сегодняшний день, согласно данным узлов учета, температура подаваемой воды в тепловых сетях практически повсеместно ниже проектной температуры в 150 °C. Отрегулировать тепловую систему и устранить потери теплоты при транспортировке для приведения сетей теплоснабжения к проектным параметрам представляется очень сложной, экономически затратной и нецелесообразной задачей. Итак, можно сделать вывод о том, что на сегодняшний день существует необходимость детального исследования низкотемпературных систем теплоснабжения.
Необходимо провести точные расчеты, подтвердив их натурными экспериментами, для оценки изменения всех параметров сетей теплоснабжения и экономической целесообразности перевода систем на низкотемпературные режимы. Также в результате этих расчетов и экспериментов необходимо определить, какой именно низкотемпературный график теплоснабжения является наиболее подходящим с точки зрения улучшения состояния тепловых сетей и энергетической эффективности теплоснабжения в целом, повышения комфорта в зданиях и уменьшения капитальных затрат.