Рис. 1. Разрез алюминиевого радиатора
Рис. 2. Разрез стального радиатора
Рис. 3. Разрез конвектора
Наверняка все вы неоднократно слышали от производителей стальных панельных радиаторов (Purmo, Dianorm, Kermi и т.д.) о небывалой эффективности их оборудования в современных высокоэффективных низкотемпературных системах отопления. Но никто не удосужился объяснить — откуда же берётся эта эффективность?
Для начала давайте рассмотрим вопрос: «Для чего нужны низкотемпературные системы отопления?» Они нужны для того, чтобы можно было использовать современные высокоэффективные источники тепловой энергии, такие как конденсационные котлы и тепловые насосы. В силу специфики данного оборудования температура теплоносителя в этих системах колеблется в пределах 45-55 °C. Тепловые насосы физически не могут поднять температуру теплоносителя выше. А конденсационные котлы экономически нецелесообразно разогревать выше температуры конденсации пара 55 °С ввиду того, что при превышении этой температуры они перестают быть конденсационными и работают как традиционные котлы с традиционным КПД порядка 90 %. Кроме того, чем ниже температура теплоносителя, тем дольше проработают полимерные трубы, ведь при температуре 55 °С они деградируют 50 лет, при температуре 75 °С — 10 лет, а при 90 °С — всего три года. В процессе деградации трубы становятся хрупкими и ломаются в нагруженных местах.
С температурой теплоносителя определились. Чем она ниже (в допустимых пределах), тем эффективнее расходуются энергоносители (газ, электричество), и тем дольше работает труба. Итак, тепло из энергоносителей выделили, теплоносителю передали, в отопительный прибор доставили, теперь тепло нужно передать от отопительного прибора в помещение.
Как все мы знаем, тепло от отопительных приборов в помещение поступает двумя способами. Первый — это тепловое излучение. Второй — это теплопроводность, переходящая в конвекцию.
Давайте рассмотрим каждый способ повнимательнее.
Всем известно, что тепловое излучение — это процесс переноса тепла от более нагретого тела к менее нагретому телу посредством электромагнитных волн, то есть, по сути, это перенос тепла обычным светом, только в инфракрасном диапазоне. Именно так тепло от Солнца достигает Земли. Из-за того, что тепловое излучение по сути является светом, то к нему применимы те же физические законы, что и для света. А именно: твёрдые тела и пар практически не пропускают излучение, а вакуум и воздух, наоборот, прозрачны для тепловых лучей. И только наличие в воздухе концентрированных водяных паров или пыли уменьшает прозрачность воздуха для излучения, и часть лучистой энергии поглощается средой. Поскольку воздух в наших домах не содержит ни пара, ни плотной пыли, то очевидно, что для тепловых лучей его можно считать абсолютно прозрачным. То есть излучение не задерживается и не поглощается воздухом. Воздух не греется излучением.
Лучистый теплообмен идёт до тех пор, пока существует разница между температурами излучающей и поглощающей поверхностей.
Теперь поговорим про теплопроводность с конвекцией. Теплопроводность — это перенос тепловой энергии от нагретого тела к холодному телу при непосредственном их контакте. Конвекция — это вид теплопередачи от нагретых поверхностей за счёт движения воздуха, создаваемого архимедовой силой. То есть нагретый воздух, становясь легче, под действием архимедовой силы стремится вверх, а его место возле источника тепла занимает холодный воздух. Чем выше разница между температурами нагретого и холодного воздуха, тем больше подъёмная сила, которая выталкивает нагретый воздух вверх.
В свою очередь, конвекции мешают различные преграды, такие как подоконники, шторы. Но самое главное — это то, что конвекции воздуха мешает сам воздух, а точнее, его вязкость. И если в масштабах помещения воздух практически не мешает конвективным потокам, то, будучи «зажатым» между поверхностями, он создаёт существенное сопротивление перемешиванию. Вспомните оконный стеклопакет. Слой воздуха между стёклами тормозит сам себя, и мы получаем защиту от уличного холода.
Ну, а теперь, когда мы разобрались в способах теплопередачи и их особенностях, давайте посмотрим на то, какие процессы проходят в отопительных приборах при разных условиях. При высокой температуре теплоносителя все отопительные приборы греют одинаково хорошо — мощная конвекция, мощное излучение. Однако при снижении температуры теплоносителя всё меняется.
Конвектор. Самая горячая его часть — труба с теплоносителем — находится внутри отопительного прибора. От неё греются ламели, и чем дальше от трубы, тем ламели холоднее. Температура ламелей практически равна температуре окружающей среды. Излучения от холодных ламелей нет. Конвекции при низкой температуре мешает вязкость воздуха. Тепла от конвектора крайне мало. Чтобы он грел, нужно либо повышать температуру теплоносителя, что сразу снизит эффективность системы, либо выдувать из него тёплый воздух искусственно, например, специальными вентиляторами.
Алюминиевый (секционный биметаллический) радиатор конструктивно очень похож на конвектор. Самая горячая его часть — коллекторная труба с теплоносителем — находится внутри секций отопительного прибора. От неё греются ламели, и чем дальше от трубы, тем ламели холоднее. Излучения от холодных ламелей нет. Конвекции при температуре 45-55 °С мешает вязкость воздуха. В итоге тепла от такого «радиатора» в нормальных условиях эксплуатации крайне мало. Чтобы он грел, нужно повышать температуру теплоносителя, но оправдано ли это? Таким образом, мы практически повсеместно сталкиваемся с ошибочным расчётом количества секций в алюминиевом и биметаллическом приборах, которые основываются на подборе «по номинальному температурному потоку», а не исходя из реальных температурных условий эксплуатации.
Самая горячая часть стального панельного радиатора — внешняя панель с теплоносителем — находится снаружи отопительного прибора. От неё греются ламели, и чем ближе к центру радиатора, тем ламели холоднее. А излучение от наружной панели идёт всегда
Стальной панельный радиатор. Самая горячая его часть — внешняя панель с теплоносителем — находится снаружи отопительного прибора. От неё греются ламели, и чем ближе к центру радиатора, тем ламели холоднее. Конвекции при низкой температуре мешает вязкость воздуха. А что с излучением?
Излучение от наружной панели идёт до тех пор, пока существует разница между температурами поверхностей отопительного прибора и окружающих предметов. То есть всегда.
Кроме радиатора данное полезное свойство присуще и радиаторным конвекторам, таким как, например, Purmo Narbonne. В них теплоноситель также протекает снаружи по прямоугольным трубам, а ламели конвективного элемента располагаются внутри прибора.
Применение современных энергоэффективных отопительных приборов способствует снижению затрат на отопление, а широкий ряд типоразмеров панельных радиаторов от ведущих производителей с лёгкостью помогут воплотить в жизнь проекты любой сложности.