

ВОЗДУХОВОДЫ И ФАСОННЫЕ ЭЛЕМЕНТЫ ИЮЛЬ 2024

Нам доверяют лидеры

Компания **HEBATOM** подтверждает это каждый день. Именно мы помогаем заводам, жилым комплексам, комбинатам, дворцам спорта, шахтам, школам, больницам, училищам, складам, торговым центрам, лабораториям, вокзалам, аэропортам, офисам и другим зданиям дышать.

Среди наших клиентов Русская медная компания, Газпромнефть, КFC, Магнит, Л'Этуаль, Роскосмос, Уральский завод конвейерных лент, Российские железные дороги, Wildberries и это далеко не все на территории России и стран СНГ.

nevatom.ru

СОДЕРЖАНИЕ

1. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ВОЗДУХОРАСПРЕДЕЛИТЕЛЬНОЙ СЕТИ	4
2. ОСНОВНЫЕ ЭЛЕМЕНТЫ ВЕНТИЛЯЦИОННОЙ СИСТЕМЫ	6
3. ВОЗДУХОВОД С ИНТЕГРИРОВАННЫМ ФЛАНЦЕМ TDC III	7
3.1. Процесс производства воздуховодов с интегрированным фланцем	10
3.2. L-образные воздуховоды	13
4. ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ К СИСТЕМАМ ВОЗДУХОВОДОВ ПО КЛАССУ	
ГЕРМЕТИЧНОСТИ	15
5. ПРЯМОУГОЛЬНЫЕ ВЕНТИЛЯЦИОННЫЕ СИСТЕМЫ	16
5.1. Прямоугольные воздуховоды	19
5.2. Врезки	20
5.3. Заглушки	21
5.4. Отводы	22
5.5. Отводы равномерного распределения потока	23
5.6. Переходы	24
5.7. Тройники	25
5.8. Утки	26
6. ЭКОНОМИЧНАЯ СИСТЕМА ВЕНТИЛЯЦИИ NEVATOM SYSTEM	27
7. КРУГЛЫЕ ВЕНТИЛЯЦИОННЫЕ СИСТЕМЫ	29
7.1. Спирально-навивные воздуховоды	30
7.2. Прямошовные воздуховоды (ПШ)	31
7.3. Врезки	32
7.4. Заглушки	34
7.5. Крестовины	35
7.6. Ниппели	36
7.7. Отводы	37
78. Переходы	38
7.9. Тройники	40
7.10. Утки	43
8. СЕРТИФИКАТ	44

1. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ВОЗДУХОРАСПРЕДЕЛИТЕЛЬНОЙ СЕТИ

Воздухораспределительная сеть должна обеспечивать пропуск достаточного объема воздуха при следующих условиях:

- Герметичность
- Минимальные потери напора
- Скорость воздуха не выше допустимой по санитарным нормативам
- Уровень шума не выше допустимого по санитарным нормативам
- Минимальное занимаемое воздуховодами пространство
- Тепло- и звукоизолированность (при необходимости)

В зависимости от конкретных условий подбирают оптимальную конфигурацию сети воздуховодов, их материал и сечение.

НОРМАТИВНЫЕ ДОКУМЕНТЫ

Номенклатура и основные размеры унифицированных деталей металлических воздуховодов, деталей систем вентиляции, распределительных устройств, материал изготовления воздуховодов и его толщина в зависимости от сечения воздуховодов установлены в следующих нормативных документах:

- СП 60.13330.2020 (СНИП 41-01-2003) «Отопление, вентиляция и кондиционирование воздуха»
- СП 7.13130.2013 «Отопление, вентиляция и кондиционирование. Требования пожарной безопасности»
- ТУ 4863-002-58769768-2014 «Конструкции вентиляционные классов A, B, C, D»

ВОЗДУХОВОДЫ ДЛЯ ОБЩЕОБМЕННОЙ ВЕНТИЛЯЦИИ

Воздуховоды систем вентиляции и кондиционирования распределяют воздух и обеспечивают воздухообмен в помещениях.

Круглые и прямоугольные воздуховоды HEBATOM из оцинкованной листовой стали соответствуют требованиям ГОСТ 24751-81 и СП 60.13330.2020 (СНиП 41-01-2003). Прямые части, а также круглые и прямоугольные фасонные элементы изготавливают из оцинкованной толщиной от 0.5 до 1.2 мм или черной стали толщиной от 1.0 до 1.2 мм.

ВОЗДУХОВОДЫ ДЛЯ АГРЕССИВНЫХ СРЕД

Воздуховоды из нержавеющей стали подходят для производственных помещений предприятий пищевой, химической и фармацевтической промышленностей, а также для больниц и заведений общепита. Нержавеющая сталь обладает слабыми магнитными свойствами, устойчива к щелочам, кислотам и повышенной влажности, что подходит для помещений с агрессивным воздействием окружающей среды*.

Круглые и прямоугольные воздуховоды из нержавеющей стали производят в соответствии с требованиями ГОСТ 24751-81 и СП 60.13330.2020 (СНиП 41-01-2003).

Толщина металла – 0,5 или 0,8 мм (зависит от размеров и предъявляемых требований)**. В процессе производства в HEBATOM применяют газовую аргонную сварку с использованием инертных газов и их смесей.

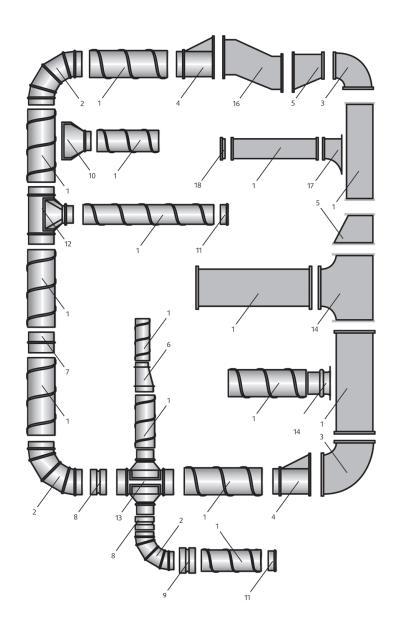
ПРЕИМУЩЕСТВА:

- Такие воздуховоды не ржавеют
- Они рассчитаны на высокие температуры (более 200 °С), что позволяет применять их для отвода горячего воздуха в дымоходах и системах дымоудаления
- Срок службы воздуховодов и фасонных частей из нержавеющей стали в разы превышает срок службы изделий из оцинкованной или черной стали

^{*}Воздуховоды и фасонные элементы из нержавеющей стали предназначены для эксплуатации с прохождением агрессивной среды по внутреннему сечению воздуховода. Для использования в условиях внешнего воздействия агрессивной среды воздуховоды и фасонные элементы не изготавливаются

^{* *}Толщину металла следует уточнить при согласовании заказа

2. ОСНОВНЫЕ ЭЛЕМЕНТЫ ВЕНТИЛЯЦИОННОЙ СИСТЕМЫ


Сеть металлических воздуховодов рекомендуют компоновать из унифицированных стандартных деталей (прямых участков, отводов, переходов, ниппелей, заглушек) и узлов ответвлений (тройников, крестовин, врезок).

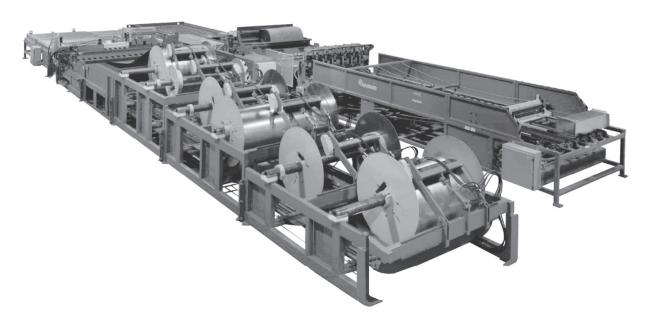
КОНСТРУКЦИЯ ВЕНТИЛЯЦИОННОЙ СИСТЕМЫ

- 1 прямые участки
- 2 отвод круглый 90°
- 3 отвод прямоугольный 90°
- 4 переход с прямоугольного на круглый
- 5 переход с прямоугольного на прямоугольный
- 6 переход односторонний
- 7 ниппель внутренний
- 8 ниппель наружный для фасонных элементов
- 9 ниппель наружный для воздуховодов ПШ
- 10 врезка воротниковая
- 11 заглушка круглая
- 12 тройник круглый
- 13 крестовина
- 14 врезка круглая с пластиной
- 15 тройник прямоугольный
- 16 утка прямоугольная
- 17 врезка «Сапог»
- 18 заглушка прямоугольная

ТИПЫ СОЕДИНЕНИЙ:

- Интегрированный фланец
- Шинорейка
- Ниппель
- Ниппель с резиновым уплотнением
- Фланец из уголка
- Фланец плоский

3. ВОЗДУХОВОД С ИНТЕГРИРОВАННЫМ ФЛАНЦЕМ TDC III


HEBATOM предлагает прямоугольные воздуховоды и фасонные изделия с интегрированным фланцем TDC III. Он позволяет соединять между собой части системы воздуховодов без шинореечного профиля. Эта технология повышает герметичность систем воздуховодов в **8 раз** по сравнению с шинореечным соединением.

ПРЕИМУЩЕСТВА

1. Высокая герметичность

Герметичность систем воздуховодов обеспечивают два элемента:

- Интегрированный фланец TDC III, который является продолжением прямоугольного воздуховода, изготовлен из цельной заготовки того же листового металла, загнутой по краям и сцепленной с помощью специальных уголков
- Фальц (продольный шов) по технологии Pittsburgh или Snap-Lock, который используют для соединения L-образных воздуховодов*

Интегрированный фланец TDC III — это ключевой элемент воздуховода HEBATOM, от которого получила название технология. Он обеспечивает высокую герметичность стыков воздуховодов за счет отсутствия щелей, через которые утекает воздух при шинореечном соединении. Такой фланец формируется на автоматизированной производственной линии

Formtek Fabriduct из того же листового металла, что и воздуховод. Края загибают в нужную конфигурацию, прокатывая их через **21 пару** специальных роликов. На рисунке 1 показано сечение **интегрированного фланца TDC III**, полученное в результате этого процесса, рядом с сечением типичного шинореечного фланца.

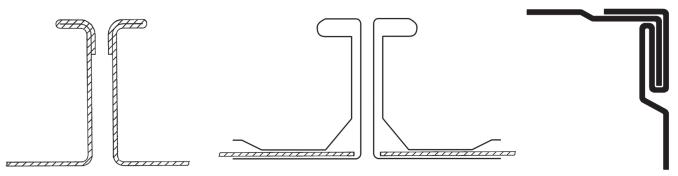
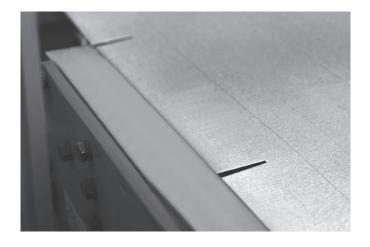
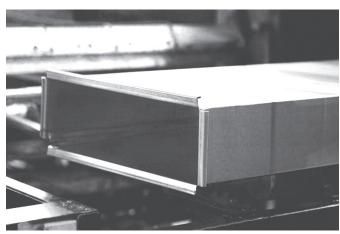


Рисунок 1 – Сечение интегрированного фланца ТDC III (слева) и типичного шинореечного (справа)

Pисунок 2- Схема шва Pittsburgh

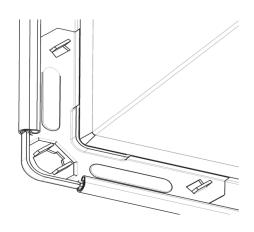
Фальц соединяет края заготовки воздуховода, формируя единый короб. В замкнутых воздуховодах **HEBATOM** используют шов **Pittsburgh** (см. рисунок 2) – технологию угловой фальцовки металла. Процесс фальцовки начинают на линии Formtek Fabriduct, где продольные края заготовки прокатывают через специальные ролики, формирующие шип и паз шва. Далее эти края смыкают вручную и «закатывают» на станке Whisper-loc, который прочно зажимает один край в другом и обеспечивает высокую плотность соединения. В результате получается гладкий, ровный шов, который совместно **с интегрированным фланцем TDC III** повышает герметичность воздуховода до **класса герметичности «С»**.


2. Высокая жесткость соединений


Интегрированный фланец TDC III имеет бо́льшую жесткость по сравнению с фланцем, выполненным на шинореечном соединении. Фланец TDC III является продолжением воздуховода и сделан из того же металла в отличие от шинореечного соединения, которое фиксируют на воздуховоде внешними креплениями: пуклями, шурупами. Прочная конструкция фланца делает его устойчивым к различным нагрузкам при транспортировке и монтаже. Высокая жесткость интегрированного фланца TDC III существенно экономит время монтажа без потери качества.

3. Геометрически правильная форма воздуховодов

Воздуховоды геометрически правильной формы выстраиваются в идеально прямую линию без закручивания в «винт» и прочих деформаций, позволяя выстроить систему воздуховодов в абсолютно точном соответствии с проектом. Отсутствие деформаций снижает турбулентность воздуха и вибрацию, что повышает эффективность воздухообмена всей системы вентиляции.


4. Стабильность и точность результата

Автоматизированная производственная обеспечивает стабильную предсказуемость качества изделий, исключая воздействие человеческого фактора и вероятность выпуска продукта с какой-либо погрешностью браком. Последовательность и согласованность процессов автоматизированного формирования интегрированного фланца TDC III упрощает выполнение заказов для проектов любого масштаба и сложности.

5. Высокая скорость производства без потери качества

Раскрой одного воздуховода на автоматизированной линии Formtek Fabriduct, занимает не более 2 минут, но так как на линии одновременно находится до 4 заготовок на разных стадиях процесса, время, затраченное на раскрой и загиб каждого последующего воздуховода, сокращается до 40 секунд.

Интегрированный фланец TDC III с установленным уголком

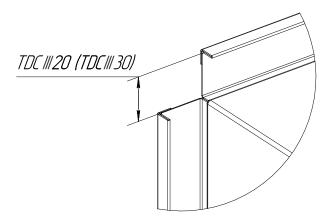
3.1. ПРОЦЕСС ПРОИЗВОДСТВА ВОЗДУХОВОДОВ С ИНТЕГРИРОВАННЫМ ФЛАНЦЕМ


Компания **HEBATOM** производит воздуховоды TDC III на специальной автоматизированной линии Formtek Fabriduct, аналогов которой нет в нашей стране. Линия работает с высокой скоростью и точностью, гарантируя повторяемость качественного результата для проектов любого масштаба и сложности.

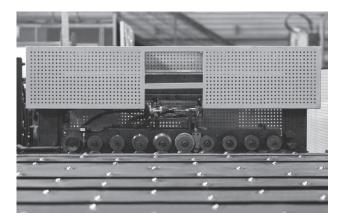
ЭТАПЫ ИЗГОТОВЛЕНИЯ

- Поставительной пороживающей поставительной постави
- 2 После того, как заказ поступает на участок, оператор вносит необходимые параметры: габариты, количество фланцев (1-2), толщину металла, тип шва, количество воздуховодов через контрольную панель, которая запускает работу линии Formtek Fabriduct.

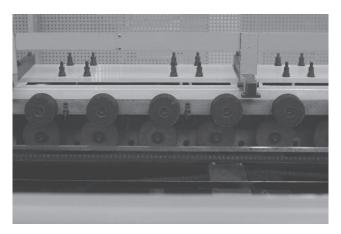
- З После старта разматыватели вытягивают из бобин с рулонным металлом нужную длину полотна, отрезают ее и размещают на конвейере. На линии Formtek Fabriduct установлено б бобин, в течение смены линия может выполнять заказы на воздуховоды из разных типов металла. Ее работу программируют таким образом, что сначала производятся все заготовки из одного типа металла, после чего разматыватель переподключается к бобине с другим металлом соответственно заказу.
- 4 Заготовка проходит через 15 пар роликов, которые выполняют Z-образное профилирование поверхности листа. Сформированные ребра жесткости увеличивают жесткость каждой из сторон воздуховода. Это защищает готовое изделие от деформаций во время складирования, транспортировки и монтажа.



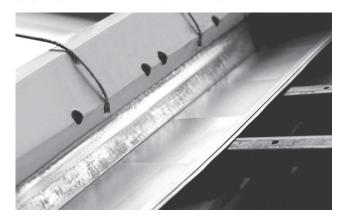
5 Одновременно с формированием **ребер жесткости** секционные вырубные ножи делают высечку для дальнейшего формирования шва, который будет скреплять короб (Pittsburgh или Snap-Lock), и V-образные высечки по бокам заготовки. В глубину высечек заложена высота будущего фланца — 20 мм или 30 мм. В каталоге эта длина указана под маркировкой TDC III 20 и TDC III 30.



Фланец TDC III 20/30мм


Заготовка идет по направляющим на прокатку швов, где формируются шип и паз продольного шва. На этом же этапе происходит автоматическое впрыскивание герметика в шов Snap-lock. Он повышает плотность воздуховодов, состоящих из L-образных половинок.

7 Затем происходит прокатка одного или двух фланцев TDC III в зависимости от запрограммированных параметров. Заготовка проходит через 21 пару роликов, которые последовательно формируют интегрированный фланец.



Далее раскроенная заготовка попадает в модуль автоматической гибки, где листогибом формируется короб воздуховода по уже намеченным швам согласно заданному в программе сечению. Затем оператор станка скрепляет заготовку в единый короб, вставляя шип в паз. Это завершающий этап формирования геометрии воздуховода.

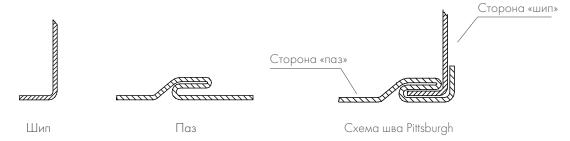
- Ра выходе мы получаем практически готовое изделие, которое отправляется на закрытие шва Pittsburg на станке Whisper-Loc. Герметичность воздуховода класса «С» напрямую зависит от того, насколько правильно прокатан продольный шов. На станке Whisper-Loc прокатывают швы цельных воздуховодов. Это обеспечивает идеальную плотность шва, которая не требует дополнительного использования. L-образные воздуховоды со швом Snaplock пропускают этот этап, поскольку их швы закрывают при монтаже на объекте.
- 10 После этого цельный воздуховод с прокатанным швом Pittsburg или L-образная половинка со швом Snap-lock с уже готовым интегрированным фланцем TDC III отправляются на запрессовку уголков на станке Cornermatic. Станок одновременно монтирует 2 уголка на противоположных концах воздуховода, обеспечивая равномерную запрессовку и экономя время. Готовый интегрированный фланец с уголками выдерживает намного больший вес, чем вес самого

воздуховода – например, можно скрепить 7-8 воздуховодов на полу и поднять их для монтажа, используя всего одну опору, не рискуя деформировать фланец.

ТЕХНОЛОГИЯ ИЗГОТОВЛЕНИЯ ФАСОННЫХ ИЗДЕЛИЙ ПРЯМОУГОЛЬНОГО СЕЧЕНИЯ С ФЛАНЦАМИ TDC III

- 1 Все элементы фасонных изделий раскраиваются на станках плазменного раскроя
- 2 На торцах фасонных изделий с применением станка Roll Former откатываются фланцы TDC III
- После откатки фланцев TDC III фасонные изделия собирают по стандартной технологии
- 4 После сборки фасонных изделий в углы фланцев TDC III устанавливают и запрессовывают уголки на станке Cornematic. Уголки загружены в станок и мгновенно вклепываются в изделие

3.2. L-ОБРАЗНЫЕ ВОЗДУХОВОДЫ


Перевозить прямоугольные воздуховоды на большие расстояния дорого – они занимают много пространства, и фактически приходится везти «воздух».

HEBATOM предлагает оптимальное решение — L-образные половинки прямоугольных воздуховодов. Эта технология позволяет перевозить в 3 раза больше изделий в одной машине или контейнере. L-образные воздуховоды изготавливаются по технологии интегрированного фланца TDC III, в качестве фальца используется технология **Snap-lock** или «защелочный фальц».

Snap-lock — продольный шов, который используют для стыковки L-образных половинок воздуховодов. У каждой половинки есть паз и шип. Для получения прямоугольного воздуховода нужно состыковать половинки, чтобы шип вошел в паз, по щелчку они плотно смыкаются в замок. Чтобы повысить плотность стыковки и предотвратить потери воздуха на линии, сразу после формирования паза в него впрыскивается гермобутиловый материал:

Pittsburgh — подробная информация на стр. 8.

ПРЕИМУЩЕСТВА:

• Высокая скорость производства

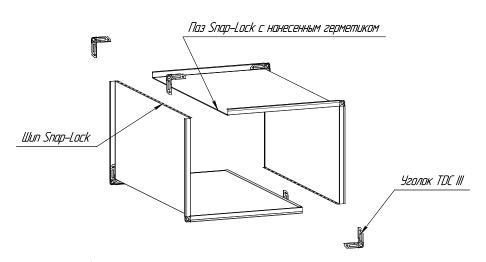
Скорость выпуска L-образных половинок выше, чем цельных воздуховодов. Они не проходят процедуру прокатки шва, на производстве устанавливают только 4 из 8 уголков, остальные монтируют при сборке на объекте.

• Экономия на транспортировке

Готовые L-образные половинки размещают стопками в грузовом автомобиле. Такой метод позволяет отгружать в одну машину в 3 раза больше воздуховодов в сравнении с замкнутыми прямоугольными.

• Адаптация под потребности заказчика

Среднее время застывания герметика внутри шва — 20-25 дней. Это значительное преимущество перед гораздо быстрее застывающим силиконом, поскольку такой срок позволяет перевозить L-образные воздуховоды на большие расстояния или заказывать заранее и хранить на складе до востребования.



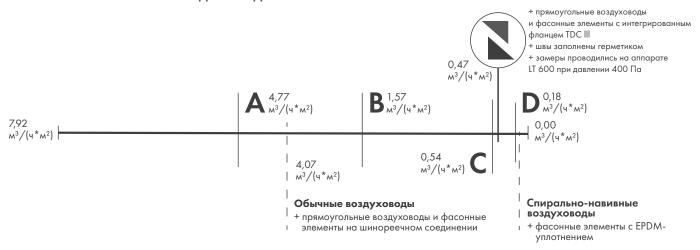
• Простота сборки

L-образные воздуховоды собираются легко, как конструктор. Они не требуют специального инструмента (только киянка или молоток) и при этом обеспечивают заявленную герметичность класса «С». Вам не придется сверлить отверстия, искать другие крепежные элементы, потому что уголки входят в комплект поставки L-образных воздуховодов.

ТЕХНОЛОГИЯ СБОРКИ ВОЗДУХОВОДОВ НА ЗАЩЕЛОЧНОМ ФАЛЬЦЕ

- Выровнять торцы половинок так, чтобы они оказались в одной плоскости
- 2 Соединить паз и шип
- 3 После фиксации крепления простучать шов по всей длине таким способом, чтобы они встали плотно до щелчка, поэтому технология названа Snap-lock от snap (щелчок) и lock (замок)
- 4 Вставить уголки в интегрированный фланец TDC III сверху и снизу с двух сторон, чтобы воздуховоды можно было крепить друг к другу
- 5 Загнуть интегрированный фланец вдоль каждого уголка

L – образные половинки прямоугольных воздуховодов, изготовленных по технологии TDC $\parallel \parallel$


4. ТРЕБОВАНИЯ, ПРЕДЪЯВЛЯЕМЫЕ К СИСТЕМАМ ВОЗДУХОВОДОВ ПО КЛАССУ ГЕРМЕТИЧНОСТИ

Утечка воздуха из-за негерметичности соединений воздуховодов — одна из самых дорогостоящих потерь при эксплуатации систем вентиляции. Утечка означает понижение давления в системе, тепловые потери. Утечки вынуждают проектировщиков завышать характеристики подбираемых вентиляторов и другого оборудования для компенсации потерь, а также приводят к дополнительным трудозатратам на этапе монтажа

В России классы герметичности установлены в СП 60.13330.2020. Этот документ определяет четыре класса, которые соответствуют классификации, установленной европейским стандартом EN 12237 (Eurovent 2.2). При статическом давлении 400 Па по классу герметичности воздуховоды делятся на:

- Класс «А» низкий класс, коэффициент утечки 4,77 м³/(ч*м²)
- Класс «В» средний класс, коэффициент утечки 1,57 м³/(ч*м²)
- Класс «С» высокий класс, коэффициент утечки 0,54 м³/(ч*м²)
- Класс «D» специальный класс, коэффициент утечки 0,18 м³/(ч*м²)

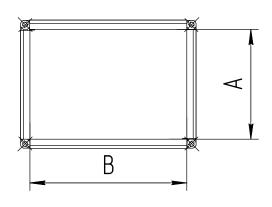
КЛАССЫ ГЕРМЕТИЧНОСТИ ВОЗДУХОВОДОВ

«С» – это максимально достижимый класс герметичности для прямоугольных воздуховодов. Такую высокую герметичность может обеспечить только технология **интегрированного фланца TDC III**.

Конструкция воздуховодов с фланцем TDC III прошла мировую сертификацию и признана соответствующей самым высоким требованиям: в США — стандарту SMACNA 2005 (включены в стандарт), в Европе — стандарту TUV (строительные и эксплуатационные требования) и стандарту EN 1507 (требования к прочности и уровню утечек).

Компания **HEBATOM** с 2013 года выпускает прямоугольные воздуховоды и фасонные элементы класса герметичности «С» по стандарту Eurovent 2.2. Такое качество изделий достигается благодаря технологии интегрированного фланца TDC III, при которой герметичность изделий превышает в 8 раз параметры стандартных воздуховодов с шинореечным соединением. Типичные потери воздуха при шинореечном соединении составляют примерно 1,13 $\pi/(c^*m^2)$, что соответствует 4,07 $\pi/(u^*m^2)$, тогда как интегрированный фланец TDC III сокращает потери до 0,13 $\pi/(c^*m^2)^*$, что соответствует 0,47 $\pi/(u^*m^2)$.

^{*}Данный замер проводился на воздуховодах НЕВАТОМ



5. ПРЯМОУГОЛЬНЫЕ ВЕНТИЛЯЦИОННЫЕ СИСТЕМЫ

Стандартный ряд прямоугольных воздуховодов **HEBATOM** позволяет быстро и экономично смонтировать прочную, хорошо герметизированную вентиляционную систему. Воздуховоды изготавливаются с использованием современных технологий без нарушения цинкового покрытия на фальцевом соединении.

ДОПУСТИМЫЕ ОТКЛОНЕНИЯ РАЗМЕРОВ А И В

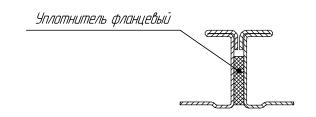
Размер А и В, мм	Возможное отклонение, мм
От 100 вкл. до 500 вкл.	± 3
Свыше 500 до 1200 вкл.	± 5
Свыше 1200 до 2000 вкл.	± 6

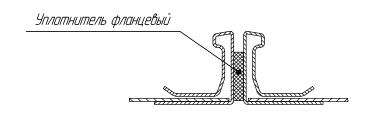
ПРОФИЛИ ДЛЯ СОЕДИНЕНИЯ

Для соединения прямоугольных воздуховодов и фасонных изделий интегрированный фланец TDC III и фланец с шинореечным профилем используются при полупериметре до 4 метров включительно. Максимальная длина стороны А или В сечения воздуховода равна 2,5 м. В остальных случаях в качестве фланца используется оцинкованный уголок 32 мм.

ИНТЕГРИРОВАННЫЙ ФЛАНЕЦ TDC III 20

Для воздуховодов и фасонных изделий с полупериметром сторон менее или равным 1000 мм и одной из сторон A (B) меньше 700 мм используется интегрированный фланец TDC III 20.

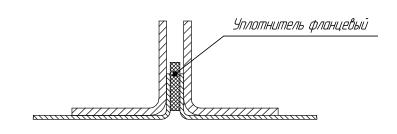

Для воздуховодов и фасонных изделий с полупериметром сторон свыше 1000 мм или одной из сторон A (B) от 700 мм используется интегрированный фланец TDC III 30.


ШИНОРЕЙКА 20

Геометрия и присоединительные размеры интегрированного фланца TDC III 20 полностью соответствуют стандартному шинореечному профилю высотой 20 мм.

ШИНОРЕЙКА 30

Геометрия и присоединительные размеры интегрированного фланца TDC III 30 полностью соответствуют стандартному шинореечному профилю высотой 30 мм.



СВАРНОЙ ФЛАНЕЦ 20

Изготавливается из гнутого уголка с размером профиля 25x25x2 мм. Условия применения типоразмера сварного фланца соответствуют условию выбора фланца TDC III 20.

Стандартная длина воздуховода со сварным фланцем 20 составляет L = 1480 мм.

СВАРНОЙ ФЛАНЕЦ 30

Изготавливается из гнутого уголка с размером профиля 32х32х2 мм. Условия применения типоразмера сварного фланца соответствуют условию выбора фланца TDC III 30.

Стандартная длина воздуховода со сварным фланцем 30 составляет L = 1470 мм.

РЕКОМЕНДАЦИИ ПО СБОРКЕ*

- По периметру интегрированного фланца проклейте уплотнительную ленту или другой материал, обеспечивающий герметичность стыка двух воздуховодов.
- 2 Состыкуйте два воздуховода между собой: один стороной с проклеенным фланцем, второй стороной с непроклеенным фланцем.

В качестве соединения необходимо использовать:

- При соединении воздуховодов или фасонных частей с фланцем **TDC III 20 или Ш 20** стандартный **болт М 8×25 с шайбой и гайкой М 8**. Для механизации сборки удобнее использовать болт М 8×25 с цилиндрической головкой под шестигранник
- При соединении воздуховодов или фасонных частей с фланцем **TDC III 30 или Ш 30** стандартный **болт М 10×25 с шайбой и гайкой М 10**. Для механизации сборки удобнее использовать болт М 10×25 с цилиндрической головкой под шестигранник

ВАЖНО обеспечить полную затяжку резьбового соединения каждого угла по периметру двух сторон воздуховода.

З Для дополнительной плотности установите скобы с шагом 500 мм по каждой стороне стыка воздуховодов.

^{*} Все комплектующие, необходимые для сборки воздуховодов, всегда есть на наших складах

ВЫБОР ТОЛЩИНЫ СТАЛИ*

Толщина, мм	Длина большей стороны B, мм
0,5	B ≤ 300
0,7	300 < B ≤ 800
1	800 < B ≤1400
1,2	1400 < B

ОСНОВНЫЕ ФОРМУЛЫ

 \blacksquare Площадь прямоугольного сечения S, M^2

$$S = A \times B$$

Площадь круглого сечения

$$S = \Pi \times R^2$$

2 Периметр прямоугольного сечения Р. м

$$P = 2 \times (A + B)$$

3 Периметр круглого сечения (длина окружности)

$$L = 2 \times \Pi \times R = \Pi D$$

4 Объем V, м³

$$V = A \times B \times L$$

 $V = \Pi \times R^2 \times L$

5 Масса погонного метра воздуховода (без учета фланцев)

$$M = L \times P \times t \times (10^{-3}) \times 7850$$

 $M = L \times L^* \times t \times (10^{-3}) \times 7850$

М – масса, кг

L – длина воздуховода

 L^* – периметр круглого сечения (длина окружности), м

Р – периметр прямоугольного сечения, м

t – толщина, мм

7850 – плотность стали, кг/м 3

 * Гидравлический диаметр * , D $_{h}$

$$D_h = \frac{2 \times A \times B}{(A + B)}$$

^{*} Для прямоугольных воздуховодов и фасонных элементов (согласно техническим условиям компании НЕВАТОМ)

^{**} Это диаметр цилиндрического канала, в котором происходит такая же потеря давления, что и в прямоугольном при одинаковой скорости воздушного потока

5.1. ПРЯМОУГОЛЬНЫЕ ВОЗДУХОВОДЫ

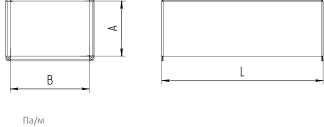
Пределом давления и разряжения для воздуховода стандартной конструкции является 1000 Па. Рекомендованный температурный диапазон эксплуатации воздуховодов от минус 70 °C до плюс 80 °C.

РАСШИФРОВКА ОБОЗНАЧЕНИЯ ВОЗДУХОВОД-300*500-1410-ОЦ.-0.7-T2.T2-RAL1000

3

4 5 6

7


1	Наименование
2	Размеры A*B, мм
3	Длина L, мм
4	Используемый материал
5	Толщина используемого материала, мм
6	Тип соединений
7	Цвет покраски по каталогу RAL

Прямоугольные воздуховоды изготавливают в любых типоразмерах. Стандартные длины воздуховодов:

- Длина 1410 мм при соединении TDC III 20
- Длина 1390 мм при соединении TDC III 30
- Длина 1500 мм при соединении шинореечным профилем

Возможно изготовление прямоугольных воздуховодов со стороной «В» меньшей или равной 4000 мм и стороной «А» меньшей или равной 4000 мм из стали толщиной 1,2 мм. Минимальное сечение воздуховодов из стали толщиной больше 0,9 мм равно 100 х 100 мм.

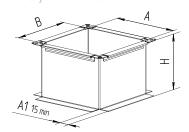
СТАНДАРТНЫЕ РАЗМЕРЫ СЕЧЕНИЙ ВОЗДУХОВОДА *

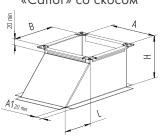
		Меньшая сторона (А), мм										
Большая сторона (В), мм	100	150	200	250	300	400	500	600	800	1000	1200	
	Масса, кг											
150	2,55	3,02										
200	3,02	3,49	3,96									
250	3,49	3,96	4,44	4,9								
300	4,95	5,55	6,13	6,73	7,3							
400	6,13	6,73	7,32	7,9	8,5	9,67						
500		7,9	8,5	9,08	9,67	10,9	12,3					
600		9,08	9,76	10,3	10,9	12,3	13,5	14,6				
800			12,3	12,9	13,5	14,6	15,8	17	27,2			
1000				15,2	15,8	17	18,2	27,1	30,4	34,3		
1200					25,4	27,1	28,7	30,4	34,3	37,6	40,9	
1400						30,4	32	34,3	37,6	40,9	44,2	
1600						36	36	37,6	40,9	44,2	47,5	
1800							39	40,9	44,2	47,5	50,8	
2000							42	44,2	47,5	50,8	54,1	

^{*} Значение массы приведено для часто применяемых размеров

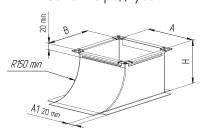
5.2. ВРЕЗКИ

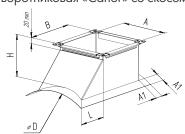
Врезка предназначена для вмонтирования в стенку воздуховода. Их изготавливают для прямоугольных и для круглых воздуховодов (воротниковые). На одной стороне врезки установлены соединительные рейки, а на другой есть отбортовка для крепления к стенке воздуховода. Сторона основного воздуховода должна быть как минимум на 50 мм больше отверстия для врезки. Врезка крепится к воздуховоду механически с помощью вытяжных заклёпок. Перед установкой между врезкой и воздуховодом необходимо нанести слой силиконового уплотнения.


Врезки «Сапог» имеют меньшие потери давления на повороте. Сечение стороны с отбортовкой у таких врезок больше сечения стороны с соединительной рейкой, а переход между ними выполнен с изгибом. Врезки «Сапог» необходимо устанавливать таким образом, чтобы изгиб находился с той стороны, откуда движется воздух.


РАСШИФРОВКА ОБОЗНАЧЕНИЯ ВРЕЗКА-500*500-100-20-ОЦ.-0.7-Г-RAL1000

1	2 3 4 5 6 7 8
1	Наименование*
2	Размеры А*В, мм
3	Высота Н, мм
4	Размер А1, мм
5	Используемый материал
6	Толщина используемого материала, мм
7	Тип соединения
8	Цвет покраски


Врезка прямоугольная По умолчанию: А1 = 20 мм


Врезка прямоугольная «Сапог» со скосом

Врезка прямоугольная «Сапог» с радиусом

Врезка прямоугольная воротниковая «Сапог» со скосом

Врезка прямоугольная воротниковая

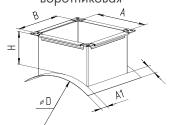
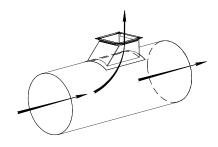
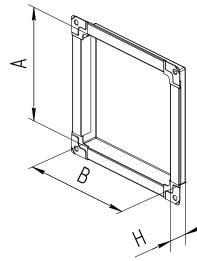



Схема движения воздуха

^{*} Менеджер НЕВАТОМ проконсультирует насчет заказа касательной врезки


5.3. ЗАГЛУШКИ

Заглушки используют на замыкающих участках воздуховодов для их герметичного завершения. Они предохраняют систему от попадания внутрь влаги и пыли. Сечение заглушки полностью совпадает с сечением воздуховода. При производстве заглушек используют те же стандарты, что и при производстве воздуховодов. Заглушки можно устанавливать в систему вентиляции до соединения воздуховодов между собой. Их легко демонтировать для очистки воздуховода от пыли в процессе эксплуатации.

РАСШИФРОВКА ОБОЗНАЧЕНИЯ ЗАГЛУШКА-500*500-20-ОЦ.-0.7-Ш2-RAL1000

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ:

- Если заглушка с шинорейкой 30, то длина заглушки Н равна 30 мм
- Если заглушка с TDC III, то длина заглушки H равна 75 мм
- Если заглушка без шинорейки или с шинорейкой 20, то длина заглушки Н равна 20 мм

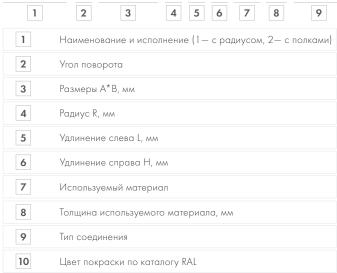
СТАНДАРТНЫЕ ТИПОРАЗМЕРЫ

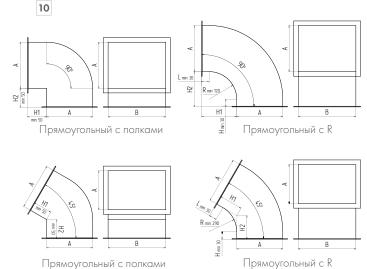
6	Сторона А, мм									
Сторона В, мм	100	150	200	250	300	400	500	600	800	1000
150	0,03 кг	0,04 кг								
200	0,038 кг	0,05 кг	0,063 кг							
250	0,045 кг	0,06 кг	0,075 кг	0,09 кг						
300	0,053 кг	0,07 кг	0,088 кг	0,105 кг	0,123 кг					
400	0,068 кг	0,09 кг	0,113 кг	0,135 кг	0,158 кг	0,203 кг				
500		0,11 кг	0,138 кг	0,165 кг	0,193 кг	0,248 кг	0,303 кг			
600		0,13 кг	0,163 кг	0,195 кг	0,228 кг	0,293 кг	0,358 кг	0,423 кг		
800			0,213 кг	0,255 кг	0,289 кг	0,383 кг	0,468 кг	0,553 кг	1,553 кг	2,553 кг
1000				0,315 кг	0,368 кг	0,479 кг	0,578 кг	0,683 кг	0,893 кг	1,103 кг

5.4. ОТВОДЫ

Используются в случае, если прямой участок магистрали воздуховодов поворачивает под углом вверх/вниз либо в сторону. Изготавливается в двух исполнениях: с радиусом и с полками.

Отвод 90°


Возможно изготовление на шинореечном профиле или на интегрированном фланце (см. прямоугольные воздуховоды)


Отвод 45°

Возможно изготовление отводов по специальному заказу в любом исполнении

РАСШИФРОВКА ОБОЗНАЧЕНИЯ ОТВОД-1-90-200*300-20-30-0Ц.-0.5-Ш2.Ш2-RAL1000

СТАНДАРТНЫЕ ТИПОРАЗМЕРЫ*

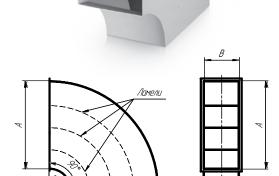
	Меньшая сторона (В), мм												
Фасонная сторона (A), мм	100	150	200	250	300	400	500	600	800	1000	1250		
(A), mm	Масса, кг отвод 90°/отвод 45°												
150	-/ 0,71	1,08/0,85	1,28/-										
200	1,42 / 1,13	1,6/1,32	1,84/ 1,5										
250	1,75 / 1,32	2,03/1,5	2,26/1,7	2,5/1,9									
300	2,6/ 2,11	3/2,52	3,36/2,9	3,72/3,3	4,07/3,5								
400	3,6/ 2,8	4,1 / 3,2	4,6/3,5	4,96/3,8	5,37 / 4,1	6,13 / 4,7							
500		5,6/5,4	6,02/5,8	6,43/6,2	6,9/6,6	7,73 / 7,4	8,6/ 8,3						
600		7,3/6,2	7,8/6,6	8,08/7	8,55/7,4	9,5/8,3	10,5/ 9,1	11,4 / 9,9					
800			11/10	11,9/11	12,5/12	13,6/ 12,7	14,8/ 13,8	15,9/ 14,9	25,4/24				
1000				17/12,7	20,7/13,8	22,4/ 14,9	24/ 15,9	25,8/17	28,8/19	32,3/21,2			
1200					24/11	28,6/20,8	42,4/30,9	45/32,7	49,9/36,3	54,9/40	59,9/43,6		
1400						48/38	52,8/41,4	55,6/43,6	61,1 / 47,9	66,6/52	72/56,5		
1600						60/48	63,6/51,9	66,2/54,4	72,3/59,4	78,3/64,4	84,3/69,3		
1800							73 / 56	79/60,4	85,4/64,7	92,2/68,6	99/ 72,7		
2000							86/63	91,8/66,5	98,6/ <i>7</i> 0	106/72,8	113 / 76		

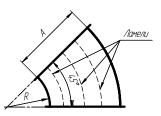
^{*} Масса приведена для часто применяемых размеров

5.5. ОТВОДЫ РАВНОМЕРНОГО РАСПРЕДЕЛЕНИЯ ПОТОКА

Отводы равномерного распределения потока используют в воздуховодах, установленных в стесненных условиях. По умолчанию изготавливают из оцинкованной стали и устанавливают перед теплообменным оборудованием.

• Отвод РРП 90°


Возможно изготовление на шинореечном профиле или на интегрированном фланце (см. прямоугольные воздуховоды).


• Отвод РРП 45°

Возможно изготовление отводов любого исполнения по специальному заказу.

РАСШИФРОВКА ОБОЗНАЧЕНИЯ ОТВОД РРП-90-500X200-150-ОЦ-0,7-Ш2.Ш2.-RAL9016

1	2 3 4 5 6 7 8
1	Наименование (Отвод равномерного распределения потока)
2	Угол поворота (90 °/45 °)
3	Типоразмер АхВ (где A $-$ высота фасонной части, В $-$ глубина отвода), мм
4	Радиус (R150, R300), мм
5	Материал
6	Толщина материала, мм
7	Тип соединения
8	Цвет покраски по каталогу RAL (по умолчанию не окрашено)

СТАНДАРТНЫЕ ТИПОРАЗМЕРЫ*

D	Глубина отвода (В), мм												
Высота фасонной стороны (А), мм	100	150	200	250	300	400	500	600	800	1000	1250		
стороны (А), мм	Значение	массы, кг	от	вод 90°/отвод	45°								
200	1,55/0,78	1,9/0,9	2,2/1,1										
250	1,95/0,98	2,3/1,1	2,6/1,3	3,0/1,5									
300	2,7/1,4	3,2/1,6	3,7/1,9	4,2/2,1	4,6/2,3								
400	4,19/2,1	4,9/2,5	5,6/2,8	6,3/3,2	7,0/3,5	8,4/4,2							
500		6,3/3,2	7,1/3,6	8,0/4,0	8,7/4,4	10,4/5,2	12,0/6,0						
600		8,0/4,0	9,1/4,6	10,1/5,0	11,0/5,6	13,0/6,5	14,9/7,5	16,9/8,4					
800			14,2/7,1	15,7/7,8	17,1 /8,6	20,0/10,0	22,8/11,4	25,6/12,8	31,3/15,6				
1000				20,8/10,4	22,4/11,2	25,8/12,9	29,2/14,6	32,5/16,3	39,2/19,6	46,0/23,0			
1200					28,5/14,3	32,4/16,2	36,3/18,1	40,1/20,1	47,9/24,0	55,7/27,8	65,3/32,		
1400						43,0/21,5	48,1/24,1	53,3/26,6	63,6/31,8	73,8/36,9	86,7/43,		
1600						51,3/25,7	57,1/28,6	62,8/31,4	74,3/37,1	85,8/42,9	100,1/50		
1800							66,7/33,4	73,0/36,5	85,7/42,9	98,4/49,2	114,2/57		
2000							82,6/41,3	90,5/45,3	106,4/53,2	122,3/61,1	142,1 /71,		

ТИП СОЕДИНЕНИЯ

 $P/2 \le 1000$ и A(B) < 700 - TDC III 20 или ш.20

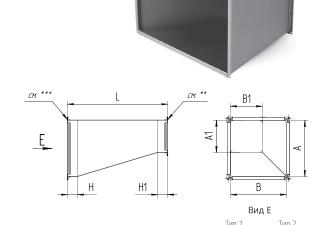
P/2 > 1000 и (А или B) $\geq 700 - TDC$ III 30 или ш.30

13 начение массы приведено для часто применяемых размеров

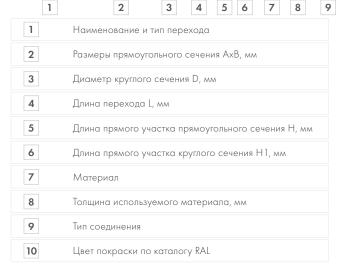
ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Количество ламелей	Радиус
А <= 250 — 1 ламель	
250 < A <= 300 — 2 ламели	150
300 < А <= 600 — 3 ламели	
600 < A <= 1200 — 4 ламели	
1200 < A <= 1800 — 5 ламелей	300
1800 < A <= 2000 — 6 ламелей	

5.6. ПЕРЕХОДЫ

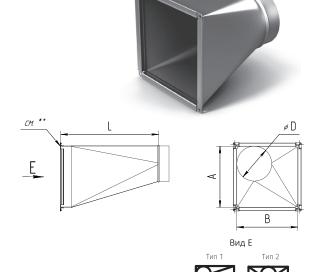

Переходы применяют, когда происходит сужение или расширение магистрали воздуховодов. Также их используют, когда изменяется геометрия сечения участка воздуховода. Например, прямоугольный участок переходит в круглый.

8


РАСШИФРОВКА ОБОЗНАЧЕНИЯ* ПЕРЕХОД-3-500*300/400*200-300-100-100-ОЦ.-0.7-Ш2.Т2-RAL1000

1	2 3 4 5 6 7
1	Наименование и тип перехода
2	Размеры левого сечения А*В, мм
3	Размеры правого сечения A 1 * B 1, мм
4	Длина перехода L, мм
5	Удлинение слева Н, мм
6	Удлинение справа Н1, мм
7	Материал
8	Толщина используемого материала, мм
9	Тип соединения
10	Вет покраски по каталогу RA

переход с прямоугольного сечения на прямоугольное



РАСШИФРОВКА ОБОЗНАЧЕНИЯ* ПЕРЕХОД-4-100*200/250-300-20-50-ОЦ-0.7-Г.ФП-RAL1000

переход с прямоугольного

РАБОЧИЕ ХАРАКТЕРИСТИКИ

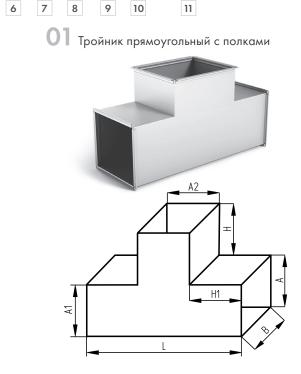
- L = 300 мм, если периметр перехода составляет до 2500 мм
- L = 500 мм, если периметр перехода составляет более 2500 мм
- По периметру стыков установлены соединительные рейки
- Со стороны круглого сечения соединение под ниппель
- * При заказе обязательно проконсультируйтесь с менеджером
- * * Шина-рейка, сварной фланец
- * * * TDC III, шина-рейка, сварной фланец

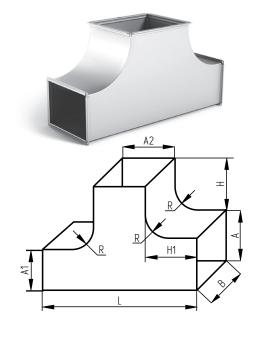
5.7. ТРОЙНИКИ

Фасонный элемент вентиляционной системы, функция которого — соединять сразу несколько воздуховодов.

ИСПОЛНЕНИЕ

- 01- Тройник прямоугольный с полками. Минимальный размер H и H $1-50\,$ мм
- 02 Тройник прямоугольный с радиусом. По умолчанию изготавливается с минимальным радиусом закругления R = 120 мм


РАСШИФРОВКА ОБОЗНАЧЕНИЯ* ТРОЙНИК-1-220*300/200*300/250*300-450-100-100-ОЦ.-0.5-Г.Г.Г-RAL1000


ТАБЛИЦА ОСНОВНЫХ ОГРАНИЧЕНИЙ

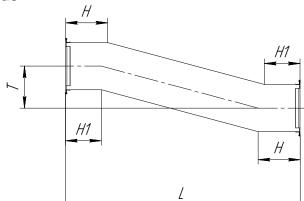
Параметр	Минимальный	Максимальный
А	100	3000
В	100	3000
Al	100	3000
A2	100	3000
Н	50	500
H1	50	500

Для соединения ТDC III минимальное значение A, B, A1, A2: 150 мм, при этом полупериметр сечений (P/2) не должен превышать 4000 мм. Н и H1 по умолчанию 100 мм, минимальное значение 100.

02 Тройник прямоугольный с радиусом

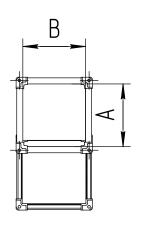
^{*} При заказе обязательно проконсультируйтесь с менеджером

5.8. УТКИ


ПРИМЕНЕНИЕ

Специальные фасонные изделия, используемые для соединения разноуровневых (с разным расположением сечений по высоте) или одноуровневых воздуховодов, взаимное расположение сечений которых смещено вправо или влево.

Сечение вентиляционной утки может быть прямоугольным или круглым в зависимости от сечения воздуховода, в состав которого она входит.


У вентиляционных уток отсутствует заужение сечения. Если необходимо заужение, следует заказывать прямоугольные переходы.

РАСШИФРОВКА ОБОЗНАЧЕНИЯ* УТКА-150*400-300-150-100-30-ОЦ.-0,5-Ш2.Ш2

1	2 3 4 5 6 7 8
1	Наименование
2	A*B, где A — размер фасонной стороны, мм
3	Длина утки (L), мм
4	Смещение (Т), мм
5	Размер Н, мм
6	Размер Н1, мм
7	Материал
8	Толщина используемого материала, мм
9	Тип соединения

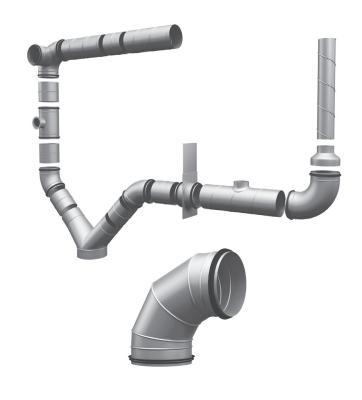
СТАНДАРТНЫЕ ТИПОРАЗМЕРЫ ²

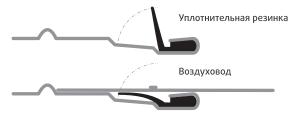
T, mm	до 200	250-300	350-400	500-600	700-800
А, мм			L, mm		
100-400	400	500	600	800	900
500-600	500	600	700	900	1000
700-800	600	700	800	1000	1100
1000-1200	800	900	1000	1000	1200
1400-2000	1000	1100	1100	1200	1500

^{*} Менеджер НЕВАТОМ проконсультирует вас по специальному заказу утки-перехода и утки с радиусами закругления

^{**} Рекомендуемые размеры Т и L в зависимости от размеров сторон воздуховодов A и B

6. ЭКОНОМИЧНАЯ СИСТЕМА ВЕНТИЛЯЦИИ NEVATOM SYSTEM


Учитывая высокие затраты на переработку воздуха, а также динамичное развитие рынка, к системам вентиляции с каждым годом предъявляют все более высокие требования. Поэтому необходимо, чтобы вентиляционные системы были достаточно герметичны и могли удержать эксплуатационные затраты на приемлемом уровне.


Для решения этой проблемы компания **HEBATOM** разработала новую комплексную систему NEVATOM SYSTEM.

Система доступна в ассортименте стандартных диаметров от \varnothing 100 до \varnothing 1250 мм.

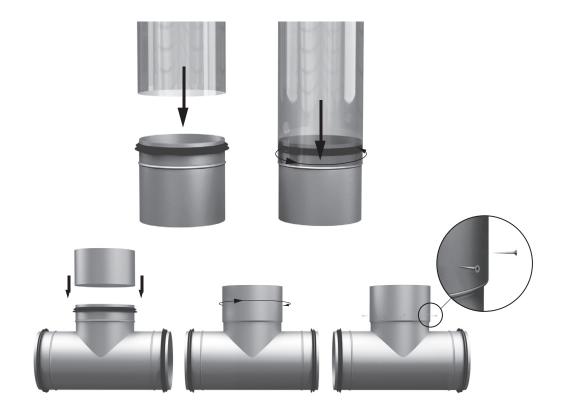
ПРЕИМУЩЕСТВА:

- Быстрый и простой монтаж
- Уплотнение заводского изготовления не теряет своих свойств. Резиновый профиль закреплен на конце фасонного элемента и тщательно зафиксирован по окружности завернутым краем. Такое исполнение гарантирует, что прокладка всегда остается на своем месте вне зависимости от условий монтажа
- Не требует использования монтажной ленты и силиконового герметика, которые содержат токсичные растворители, проникающие в вентиляционный канал
- Может использоваться в любом климате и при любых погодных условиях
- Уплотнения сертифицированы и соответствуют самому высокому классу герметичности D
- Эстетичный внешний вид, что особенно важно при открытых инсталляциях
- Внутренний и внешний производственный контроль при изготовлении всех деталей системы

ПРЕИМУЩЕСТВА ЕРОМ-УПЛОТНЕНИЯ

В качестве материала уплотнительного резинового профиля используют гомогенную EPDM-резину. Этот материал устойчив к действию озона, ультрафиолетового излучения, а вместе с тем к колебаниям температуры от минус 30° до плюс 100°С, обеспечивая тем самым более длительный срок службы.

Уплотнение сохраняет герметичность:


- При отрицательном давлении до 5000 Па
- При положительном давлении до 3000 Па

МОНТАЖ ЭЛЕМЕНТОВ NEVATOM SYSTEM

- 1. Перед монтажом очистите от загрязнений воздуховоды и фасонные изделия. С краев следует удалить заусенцы и неровности. Особое внимание обратите на резиновый уплотнитель: перед монтажом рекомендуем смазать его силиконовой смазкой.
- 2. Вставьте фасонный элемент в воздуховод плотно, до упора. Осторожное поворачивание элемента облегчит его вставку.
- 3. Фасонные изделия с резиновыми уплотнителями закрепляйте при помощи саморезов или заклепок, распределяя их равномерно по окружности. При этом отступ от края должен составлять не менее 10 мм это необходимо для того, чтобы не повредить уплотнитель.

Резиновый уплотнитель можно установить на все круглые фасонные элементы, выпускаемые компанией **НЕВАТОМ**, с сечением от \emptyset 100 мм до \emptyset 1250 мм.

Габаритные размеры характеристики и элементов смотрите в соответствующих разделах каталога.

7. КРУГЛЫЕ ВЕНТИЛЯЦИОННЫЕ СИСТЕМЫ

Стандартный ряд круглых воздуховодов позволяет быстро и экономично смонтировать прочную, хорошо герметизированную вентиляционную систему для объектов промышленного и гражданского строительства.

КОМПЛЕКТАЦИЯ

В состав системы воздуховодов входят:

- Каналы круглого сечения
- Фасонные части
- Соединительные элементы каналов (ниппели внутренние, ниппели наружные для воздуховодов ПШ, ниппели наружные для фасонных элементов)

ИСПОЛНЕНИЕ

Для соединения воздуховодов ПШ между собой используются ниппели внутренние, либо ниппели наружные для воздуховодов ПШ. Для соединения спирально-навивных воздуховодов применяются ниппели внутренние. В случае использования ниппеля внутреннего, его наружный диаметр равен внутреннему диаметру воздуховода. В случае использования ниппеля наружного для воздуховодов ПШ, его внутренний диаметр равен наружному диаметру воздуховода. Ниппель наружный для фасонных элементов применяется для соединения фасонных частей, его внутренний диаметр равен наружному диаметру стакана фасонного изделия. Для присоединения фасонной части к воздуховоду соединительный элемент не нужен, так как конструкция всех фасонных частей предусматривает сопрягаемые размеры в соответствиис прилагаемой таблицей.

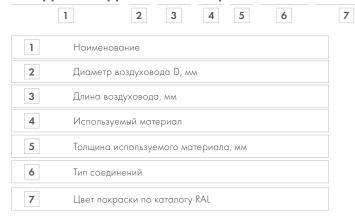
Допустимые отклонения диаметра D (спирально-навивного воздуховода) и диаметра D 1 (ниппеля внутреннего) в зависимости от размеров указаны в таблице «Технические данные».

Допустимое отклонение по длине воздуховода -5 мм.

На схеме ниже представлены типы соединений: 1— ниппель наружный для воздуховодов ПШ, 2— соединение фасонной части и воздуховода, 3— ниппель наружный для фасонных элементов, 4— ниппель внутренний.

ТЕХНИЧЕСКИЕ ДАННЫЕ

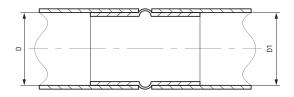
Большая сторона, мм	D min – D max канала, мм	D1 min - D1 max ниппеля, мм
100	100,0-100,5	98,8-99,3
125	125,0-125,5	123,8-124,3
160	160,0-160,6	158,7-159,3
200	200,0-200,6	198,7-199,3
225	225,0-225,6	223,7-224,3
250	250,0-250,7	248,6-249,3
280	280,0-280,8	278,5-279,3
315	315,0-315,9	313,4-314,3
355	355,0-355,9	353,4-354,3
400	400,0-401,0	398,3-399,3


Большая сторона, мм	D min – D max канала, мм	D1 min - D1 max ниппеля, мм
450	450,0-451,0	448,3-449,3
500	500,0-501,1	498,2-499,3
560	560,0-561,1	558,2-559,3
630	630,0-631,1	628,1-629,3
710	710,0-711,3	708,1-709,3
800	800,0-801,6	798,0-799,3
900	900,0-901,8	898,0-899,3
1000	1000,0-1002,0	997,9-999,3
1120	1120,0-1122,0	1117,9-1119,3
1250	1250,0-1250,5	1247,8-1249,3

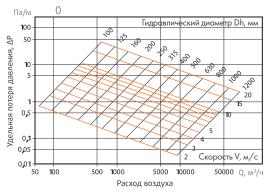
7.1. СПИРАЛЬНО-НАВИВНЫЕ ВОЗДУХОВОДЫ

Длина стандартного воздуховода со спиральным швом — 3 м (по согласованию с клиентом возможно изготовление воздуховодов большей длины). Минимальная длина спиральнонавивного воздуховода должна быть не менее 600 мм. Данные по воздуховодам со спиральным швом представлены в таблице «Технические данные» на стр. 29.

РАСШИФРОВКА ОБОЗНАЧЕНИЯ ВОЗДУХОВОД-100-3000-ОЦ.-1.0-ФП.ФП-RAL1000



ИЗГОТОВЛЕНИЕ И ВЫПУСК


Воздуховод прямой круглой формы изготавливают на специальных станках путем скручивания оцинкованной ленты (штрипсы) с последующим соединением ленты в замок. Благодаря спиральному шву воздуховоды обладают повышенной жесткостью и имеют небольшой вес, что является очень важным фактором при монтаже системы и ее последующей работе.

Воздуховоды выпускают стандартной длиной 3 м, но благодаря технологии скручивания **длина может быть любой.** Это позволяет уменьшить количество стыковочных швов, что приводит к повышению герметичности всей системы в целом.

РАБОЧИЕ ХАРАКТЕРИСТИКИ

СТАНДАРТНЫЕ ТИПОРАЗМЕРЫ

D, мм	Толщина, t	Площадь, м²	Масса, кг
100		0,942	3,444
125		1,178	4,306
140		1,319	4,822
160		1,508	5,511
180		1,695	6,200
200	0,5	1,883	6,889
225		2,119	7,750
250		2,353	10,419
280		2,638	11,669
315		2,967	13,127
355		3,344	14,794
400		3,774	22,057
450		4,237	24,815
500		4,717	27,572
560	0,7	5,263	30,880
630		5,917	34,741
710		6,667	39,152
800		7,519	44,115
900		8,475	68,718
1000	1.0	9,434	76,353
1120	1,0	10,526	85,515
1250		11,765	95,441

7.2. ПРЯМОШОВНЫЕ ВОЗДУХОВОДЫ (ПШ)

У прямошовных воздуховодов, выполненных из листовой стали толщиной 1,2 мм, соединительный шов крепят на контактную точечную сварку. Герметичность таких воздуховодов соответствует классу А.

Ограничения по размерам при заказе прямошовных воздуховодов:

Lmin = 100 мм при D от 100 мм до 1250 мм

При изготовлении воздуховодов длиной менее 200 мм «зиг» не откатывается.

РАСШИФРОВКА ОБОЗНАЧЕНИЯ ВОЗДУХОВОД ПШ-500-1500-ОЦ.-0.7-Г.Г-RAL1000

Лежачий фальц

СТАНДАРТНЫЕ ТИПОРАЗМЕРЫ

		Нержавеющая сталь			Оцинкованная сталь			
Диаметр воздуховода D, мм	Длина L, мм AISI304 мат/зерк, AISI430 зерк.	Длина L, мм AISI430 мат.	Толщина t, мм	Соединительный шов	Длина L, мм	Толщина t, мм	Соединительный шов	Н, мм (размер до «зига»)
100								
125								
140								
160								
180			0.5			0.5		35
200			0,5			0,5		33
225								
250				Шовная			Шовная	
280				сварка			сварка	
315								
355	1230/1250*	1500			1500			
400	1230/ 1230	1300			1300			
450								
500						0,7		55
560						0,7		55
630			0,8					
710			0,0					
800								
900				Лежачий			Лежачий	
1000				фальц		1,0	фальц	100
1120						1,0		100
1250								

7.3. **ВРЕЗКИ**

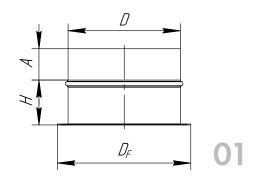
Круглая врезка предназначена для вмонтирования в стенку воздуховода и для присоединения круглых воздухораспределителей к системе воздуховодов. Прямая врезка предназначена для вмонтирования в прямоугольный воздуховод, а воротниковая — в круглый.

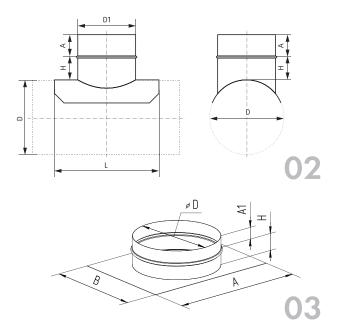
УСТАНОВКА

Для установки врезки в воздуховод в нем необходимо сделать отверстие. Сторона основного воздуховода должна быть как минимум на 50 мм больше отверстия для врезки. Врезку крепят к воздуховоду с помощью вытяжных заклепок. Перед установкой между врезкой и воздуховодом необходимо нанести слой силиконового уплотнения.

Врезки могут быть стандартных размеров или иметь нестандартную форму и сечение. Стандартные размеры для прямых врезок приведены в таблице 01, а для воротниковых — в таблице 02.

01 Врезка прямая


02 Врезка воротниковая*


РАСШИФРОВКА ОБОЗНАЧЕНИЯ** ВРЕЗКА-500-40-55-ОЦ.-0.7-H-RAL9016

03 Врезка прямая круглая с пластиной

^{*} Допустимое отклонение по длине 5 мм

^{**} Обязательно проконсультируйтесь с менеджером

СТАНДАРТНЫЕ ХАРАКТЕРИСТИКИ1

01

D, мм	Dr, mm	Толщина материала, мм	А, мм	Н, мм	Площадь, м²	Масса, кг		
100	120				0,027	0,11		
125	145				0,034	0,14		
140	160				0,038	0,16		
160	180	0,5	0,5			0,043	0,18	
180	200			0.5	25		0,049	0,20
200	220			35	40	0,054	0,22	
225	245				0,061	0,25		
250	270				0,067	0,28		
280	300				0,075	0,31		
315	335				0,085	0,35		
355	385	0,7	55		0,129	0,73		

СТАНДАРТНЫЕ ХАРАКТЕРИСТИКИ1

U.

D, мм	Dr, mm	Толщина материала, мм, мм	А, мм	Н, мм	Площадь, м²	Масса, кг						
400	430				0,145	0,83						
450	480				0,163	0,93						
500	530				0,181	1,03						
560	590	0,7	0,7	0,7	0,7	0,7 55	0,7	0,7 5	55		0,203	1,16
630	660							0,228	1,30			
710	740			40	0,258	1,47						
800	830				0,392	2,21						
900	940				0,440	3,54						
1000	1040	1,0	100		0,488	3,93						
1120	1160	1,0	100		0,547	4,40						
1250	1290				0,610	4,91						

СТАНДАРТНЫЕ ТИПОРАЗМЕРЫ

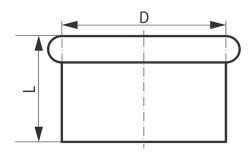
02

D1, мм	Толщина материала, мм	А, мм
100		
125		
160	0.5	
200	0,5	35
250		
315		
355	0,7	
400		
500		55
630		
800		
900		
1000	1,0	100
1250		

ТИПОВЫЕ ДИАМЕТРЫ ВОРОТНИКОВЫХ ВРЕЗОК

D/D1, mm	D/D1, mm	D/D1, mm
100/100	355/200	630/315
125/100	355/250	630/400
125/125	355/315	630/500
160/100	355/355	630/630
160/125	400/100	800/355
160/160	400/125	800/400
200/100	400/160	800/500
200/125	400/200	800/630
200/160	400/250	800/800
200/200	400/315	900/355
250/100	400/400	900/400
250/125	500/100	900/500
250/160	500/125	900/630
250/200	500/160	900/800
250/250	500/200	900/900
315/100	500/250	1000/500
315/125	500/315	1000/630
315/160	500/400	1000/800
315/200	500/500	1000/900
315/250	630/100	1000/1000
315/315	630/125	1250/630
355/100	630/160	1250/800
355/125	630/200	1250/1000
355/160	630/250	1250/1250

7.4. ЗАГЛУШКИ


Заглушки используют на замыкающих участках воздуховодов для их герметичного завершения. Они предохраняют систему от попадания внутрь влаги и пыли. Сечение заглушки полностью совпадает с сечением воздуховода. При производстве заглушек используют те же стандарты, что и при производстве воздуховодов. Заглушки можно устанавливать в систему вентиляции до соединения воздуховодов между собой. Их легко демонтировать для очистки воздуховода от пыли в процессе эксплуатации.

РАСШИФРОВКА ОБОЗНАЧЕНИЯ ЗАГЛУШКА-300-50-ОЦ.-0.7-H-RAL1000

1 2 3 4 5 6 7

1	Наименование
2	Диаметр D, мм
3	Длина L, мм
4	Используемый материал
5	Толщина используемого материала, мм
6	Тип соединения
7	Цвет покраски по каталогу RAL

СТАНДАРТНЫЕ ТИПОРАЗМЕРЫ

D, mm	Толщина материала, мм	L, mm	Площадь, м ²	Масса, кг
100		50	0,025	0,143
125			0,034	0,189
140			0,04	0,22
160	0.5		0,048	0,262
180	0,5		0,058	0,308
200			0,068	0,357
225			0,081	0,422
250			0,096	0,492
280			0,115	0,748
315			0,139	0,893
355		65	0,186	1,164
400			0,226	1,397
450	0,7		0,275	1,679
500			0,328	1,985
560			0,397	2,383
630			0,487	2,892
710			0,6	3,53
800			0,741	<i>5,75</i> 1
900		100	1,014	7,744
1000	1,0		1,217	9,241
1120			1,484	11,206
1250			1,803	13,542

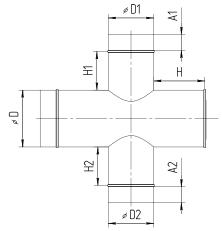
7.5. КРЕСТОВИНЫ

Крестовины предназначены для одновременного соединения четырех воздуховодов, используемых для перемещения воздуха между изолированными (разделенными перегородкой, стенами) помещениями.

ИСПОЛНЕНИЕ

1

Соединение четырех воздуховодов в единую сеть сопряжено с риском разгерметизации при дальнейшей эксплуатации: воздушные утечки приводят к потере давления в сети и увеличению шума, снижая тем самым ее эффективность. Крестовины HEBATOM проектируют с учетом требуемого уровня герметизации, обеспечиваемого технологическим процессом изготовления.


3

4 5 6 7

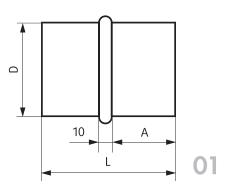
1	Наименование
2	Диаметр (D, D1, D2), мм
3	Монтажная длина L, мм
4	Высота присоединения (Н, Н1, Н2), мм
5	Материал
6	Толщина материала, мм
7	Тип соединения

2

СТАНДАРТНЫЕ ТИПОРАЗМЕРЫ*

D,	D1, D2, мм	L, mm	А,	A1, A2,	Масса, кг	Толщина материала, мм	H1, H2, _{MM}
100	100	180	35		1,353	0,5	40
125	100	180			1,315		
123	125	205			1,788		
	100	180			1,441		
160	125	205			2,009		
	160	240			2,345		
200	100	180		35	1,714		
	125	205			2,318		
	160	240			2,59		
	200	280			3,127		
	160	240			2,505		
250	200	280			3,554		
	250	330			4,201		
015	160	240			2,967		
315	200	280			4,127		

D,	D1, D2, мм	L,	A, mm	А1, А2, мм	Масса, кг	Толщина материала, мм	H1, H2,
315	250	330	35	35	4,653	0,5	40
	315	395			4,52		
355	200	280			2,94	0,7	
	250	330			3,99		
	315	395			4,845		
	355	435	55	55	5,529		
400	200	280		35	4,408		
	250	330			6,366		
	315	395			<i>7</i> ,941		
	400	480		55	6,396		
500	315	395		35	6,565		
	355	435		55	9,761		
	400	480			11,096		
	450	530			12,5		
	500	580			12,114		

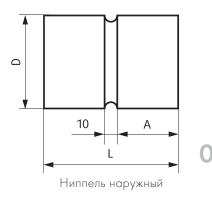

^{*} Обязательно проконсультируйтесь с менеджером

7.6. НИППЕЛИ

Для герметичного соединения круглых воздуховодов одного диаметра используют ниппели. Герметичное ниппельное соединение сокращает утечки воздуха, потери давления в сети, а также улучшает шумовые характеристики. Для соединения прямых участков воздуховодов, таких как спирально-навивные воздуховоды используют ниппель внутренний. Для соединения прямых участков воздуховодов, таких как воздуховоды ПШ используют ниппель внутренний или ниппель наружный для воздуховодов ПШ. Для соединения фасонных элементов используют ниппель наружный для фасонных элементов. Круглые воздуховоды с ниппельным соединением не имеют выступающих частей и требуют меньше пространства для монтажа. Допустимое отклонение по длине ниппеля — 5 мм.

Ниппель внутренний

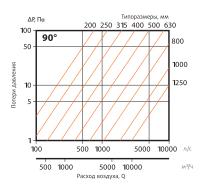


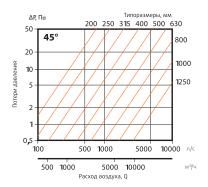

1 2 3 4 5 6 7

НИППЕЛЬ НАРУЖНЫЙ ДЛЯ ВВ ПШ-100-80-ОЦ.- 0.5-RAL9016

1 2 3 4 5 7

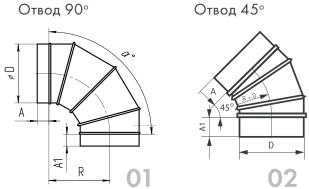
СТАНДАРТНЫЕ ТИПОРАЗМЕРЫ

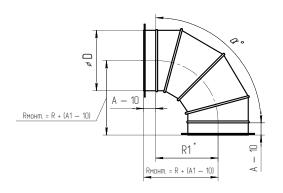

D, мм*	Толщина материала, мм	L, mm*	А, мм	Площадь, м²	Macca, кг
100				0,026	0,11
125	0,5			0,03	0,12
160		80	0.5	0,04	0,17
200			35	0,05	0,21
250				0,06	0,25
315				0,08	0,33
355	0,7	120	55	0,13	0,56
400				0,158	0,90
500				0,2	1,14
630				0,248	1,41
800				0,315	1,80
900				0,59	4,79
1000	1,0	210	100	0,677	5,45
1250				0,846	6,81


^{*} Фактический диаметр и длину уточняйте у менеджера

7.7. ОТВОДЫ

Отвод — это соединительная деталь воздуховода, предназначенная для изменения направления потока воздуха под углом 45 или 90 градусов. Его изготавливают из оцинкованной или нержавеющей стали.





РАСШИФРОВКА ОБОЗНАЧЕНИЯ ОТВОД-90-315-315-35-35-4-ОЦ.-0.5-H.H-RAL1000

1	2 3 4 5 6 7 8 9 10 11
1	Наименование
2	Угол поворота
3	Диаметр D, мм
4	Радиус R, мм
5	Удлинение А, мм
6	Удлинение A 1, мм
7	Количество сегментов
8	Используемый материал
9	Толщина используемого материала, мм
10	Тип соединений
11	Цвет покраски по каталогу RAL.

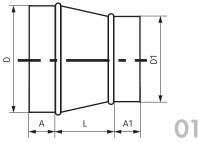
СТАНДАРТНЫЕ ТИПОРАЗМЕРЫ**

Толщина		A, A1,	Отво	д 90°	Отвод 45°		
D, mm	D, мм материала, мм	мм	Площадь, м²	Масса, кг	Площадь, м²	Масса, кг	
100			0,102	0,434	0,063	0,269	
125			0,143	0,605	0,096	0,404	
140			0,17	0,72	0,112	0,474	
160	0,5	35	0,196	0,824	0,121	0,509	
180			0,238	1	0,145	0,609	
200			0,284	1,192	0,171	0,718	
225			0,348	1,456	0,206	0,864	
250			0,417	1,745	0,245	1,024	
280			0,509	2,126	0,295	1,232	
315			0,627	2,617	0,359	1,499	
355	0,7	55	0,822	4,404	0,485	2,597	

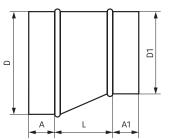
D, mm	Толщина	A, A1,		ц 90°	Отвод 45°		
D, MM	D, мм материала, мм	мм	Площадь, м²	Масса, кг	Площадь, м²	Масса, кг	
400			1,015	5,435	0,591	3,163	
450		55	1,255	6,706	0,72	3,853	
500			1,517	8,109	0,863	4,61	
560	0,7		1,866	9,966	1,049	5,605	
630			2,32	12,373	1,29	6,885	
710			2,899	15,439	1,595	8,507	
800			3,623	19,292	1,976	10,532	
900	1.0		4,762	33,838	2,703	19,15	
1000		100	5,814	41,101	3,247	23,029	
1120	1,0	100	7,246	51,292	3,968	28,145	
1250			8,85	62,939	4,831	34,258	

^{*} Радиус отвода, выполненного на фланцевом соединении, равен сумме среднего радиуса отвода ниппельного исполнения и величины удлинения: R1 = R + A, где R — средний радиус отвода с ниппельным соединением, A — удлинение отвода. По умолчанию R = D; a $^{\circ}$ 5 $^{\circ}$ - 135 $^{\circ}$

^{**} По заказу возможно изготовление отводов любого промежуточного типоразмера с различными углами


7.8. ПЕРЕХОДЫ

Для плавного перехода одного сечения круглого воздуховода в другое и сохранения оптимальной скорости потока в системах вентиляции используют круглые переходы.



РАСШИФРОВКА ОБОЗНАЧЕНИЯ ПЕРЕХОД-315/250-119-50-50-ОЦ.-1.0-Н.Ф-RAL1005

1	2 3 4 5 6 7 8
1	Наименование
2	Диаметр D/D1, мм
3	Длина перехода I, мм
4	Удлинение А, мм
5	Удлинение А 1, мм
6	Материал
7	Толщина используемого материала, мм
8	Тип соединения
8	Цвет покраски по каталогу RAL

Переход центральный

Переход односторонний

 $\mathbf{0}$

17,15

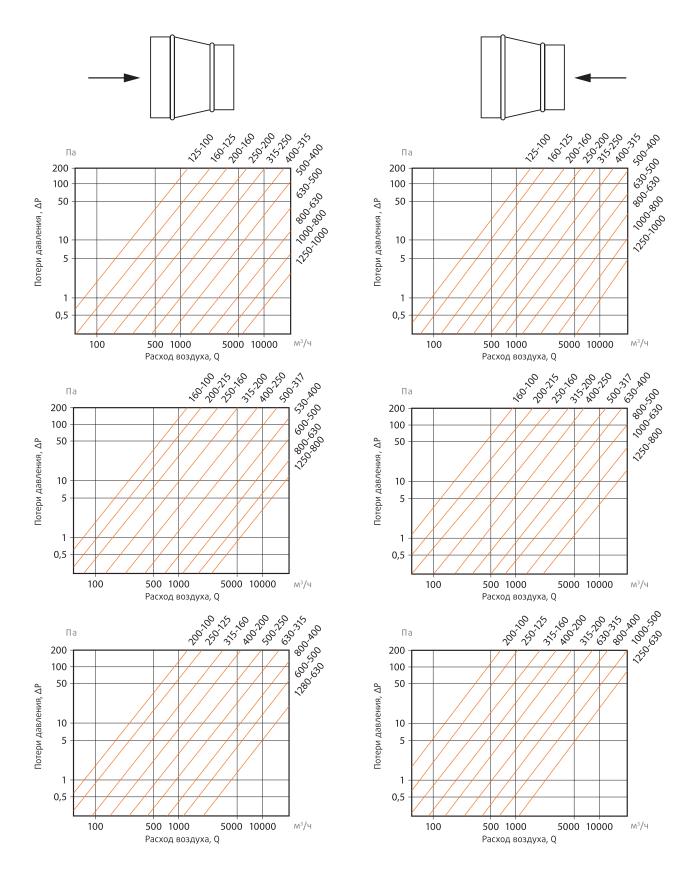
СТАНДАРТНЫЕ ТИПОРАЗМЕРЫ*

D, D1, mm	Толщина материала, мм	L (01 исполнение), мм	L (02 исполнение), мм	А, А1, мм	Площадь, м²	Масса, кг
125/100		64	80		0,08	0,33
160/100		112	103		0,094	0,39
160/125		<i>7</i> 8	80		0,1	0,41
200/100		167	172		0,12	0,50
200/125		133	129		0,122	0,50
200/160		85	80	50	0,12	0,50
250/100	0,5	236	259		0,155	0,64
250/125		202	216		0,156	0,64
250/160		154	155		0,16	0,66
250/200		99	86		0,16	0,66
315/160		243	267		0,2	0,83
315/200		188	198		0,207	0,85
315/250		119	112		0,208	0,86
355/160		300	336		0,27	1,54
355/200		238	267		0,23	1,31
355/250	0,7	162	181	65	0,17	0,97
400/200		310	345		0,42	2,39
400/250		241	259		0,39	2,22

D, D1, mm	Толщина материала, мм	L (01 исполнение), мм	L (02 исполнение), мм	А, А1, мм	Площадь, м²	Масса, кг
400/315		152	152		0,34	1,94
500/250		378	380		0,59	3,36
500/315		289	300		0,55	3,14
500/400		177	177		0,46	2,62
630/315		468	543		0,86	4,90
630/400	0,7	365	397	65	0,77	4,39
630/500		219	224		0,63	3,59
800/400		594	690		0,98	5,59
800/500		457	517		1,15	6,56
800/630		279	293		0,91	5,19
900/500		615	690		1,47	11,83
900/630		415	466		1,1	8,86
900/800		154	172		0,49	3,94
1000/500		732	862		2,12	17,07
1000/630	1,0	553	638	100	1,9	15,30
1000/800		325	345		1,53	12,32
1250/630		897	1069		3,08	24,79
1250/800		619	776		2,05	16,50

393

1250/1000

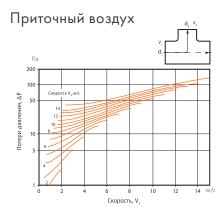

^{*} По специальному заказу возможно изготовление переходов любого исполнения, если выполняются приведенные ниже условия:

[•] Длина центрального перехода L должна удовлетворять условию: L~ (D - D1)/ 0,73

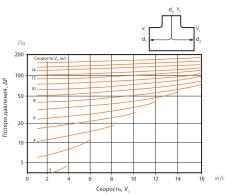
[•] Длина одностороннего перехода L должна удовлетворять условию: L~ (D - D1)/ 0,36

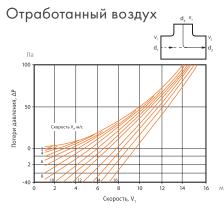
ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ЦЕНТРАЛЬНЫХ ПЕРЕХОДОВ

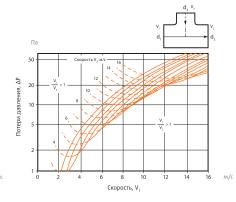
7.9. ТРОЙНИКИ

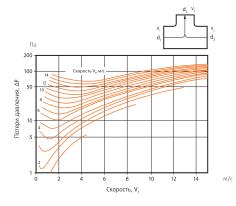

При монтаже разветвленной системы вентиляции применяют тройники.

РАСШИФРОВКА ОБОЗНАЧЕНИЯ ТРОЙНИК-200/160-35-35-240-50-ОЦ.-0.5-Н.Н.Н-RAL1000


	1	2	3	4	5	6	7	8	9	10	11
--	---	---	---	---	---	---	---	---	---	----	----


1	Наименование
2	Диаметр канала D, мм
3	Диаметр ответвления D1, мм
4	Удлинение на канале А, мм
5	Удлинение на врезке А1, мм
6	Монтажная длина L, мм
7	Длина ответвления Н, мм
8	Используемый материал
9	Толщина используемого материала, мм
10	Тип соединений
11	Цвет покраски по каталогу RAL





СТАНДАРТНЫЕ ТИПОРАЗМЕРЫ

D/D1, мм	Толщина материала, мм	L, mm	А, А1, мм	Н, мм
100/100		180		
125/100		180		
125/125		205		
160/100		180		
160/125		205		
160/160		240		
200/100		180		
200/125		205		
200/160		240		
200/200	_	280		
250/100	0,5	180	35	
250/125		205		
250/160		240		
250/200		280		
250/250		330		
315/100		180		
315/125		205		50
315/160		240		30
315/200		280		
315/250		330		
315/315		395		
355/100		180		
355/125		205		
355/160		240		
355/200		280		
355/250		330		
355/315		395		
355/355	0,7	435	55	
400/100		180		
400/125		205		
400/160		240		
400/200		280		
400/250		330		
400/315		395		

D/D1, мм	Толщина материала, мм	L, mm	A, A1, mm	Н, мм
400/400		435		
500/100		180		
500/125		205		
500/160		240		
500/200		280		
500/250		330		
500/315		395		
500/400		480		
500/500		580		
630/100		180		
630/125	0.7	205		
630/160	0,7	240	55	
630/200		280		
630/250		330		
630/315		395		
630/400		480		
630/500		580		50
630/630		710		30
800/400		480		
800/500		580		
800/630		710		
800/800		880		
900/500		580		
900/630		710		
900/800	1,0	880		
900/900		980		
1000/500		580		
1000/630		710		
1000/800		880	100	
1000/1000		1080		
1250/630		710		
1250/800		880		
1250/1000		1080		
1250/1250		1330		

ИСПОЛНЕНИЕ

Тройники для вентиляции являются фасонной частью, которая создана для разветвления линии воздуховодов. С учетом особенностей проекта мы можем изготовить тройники с различными габаритами, длиной шейки и т. д. При монтаже сначала все воздуховоды последовательно присоединяют к тройнику. Затем воздуховоды монтируют к системе вентиляции. После сборки и монтажа систему вентиляции проверяют на прочность соединений.

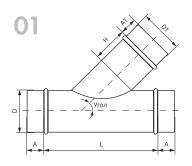
РАСШИФРОВКА ОБОЗНАЧЕНИЯ

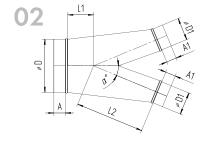
ТРОЙНИК КОСОЙ-45-200/160-35-35-400-50-ОЦ.-0.5-Н.Н.Н-RAL1000

•	
	1 2 3 4 5 6 7 8 9 10
1	Наименование
2	Угол ответвления
3	Диаметр канала D, мм
4	Диаметр ответвления D1, мм
5	Удлинения на канале А, мм
6	Удлинение на врезке А1, мм
7	Монтажная длина L, мм
8	Длина ответвления Н, мм
9	Используемый материал
10	Толщина используемого материала, мм
11	Тип соединений
12	Цвет покраски по каталогу RAL

исполнения*

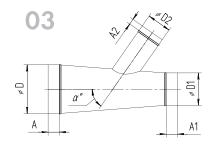
По специальному заказу возможноизготовление:


01 тройников «Косых»


02 тройников «Штаны»

03 тройников-переходов

СТАНДАРТНЫЕ ТИПОРАЗМЕРЫ


D, D1	Толщина материала, мм	А, А1, Тройник Косой/ Штаны, мм	Площадь, Тройник Косой/ Штаны, м²	Масса, Тройник Косой/ Штаны, кг
125/100			0,161/0,168	0,685/0,842
160/100			0,199/0,192	0,841/0,958
160/125			0,23/0,241	0,969/1,184
200/100			0,242/0,221	1,02/1,093
200/125			0,279/0,274	1,173/1,336
200/160			0,331/0,356	1,389/1,709
250/100	0,5	35/50	0,296/0,256	1,244/1,263
250/125			0,34/0,315	1,427/1,529
250/160			0,403/0,405	1,688/1,932
250/200			0,473/0,519	1,981/2,438
315/160			0,496/0,469	2,075/2,225
315/200			0,582/0,593	2,433/2,777
315/250			0,691/0,766	2,885/3,535
355/160			0,609/0,52	3,269/3,156
355/200		55/A=60, A1=50	0,707/0,651	3,794/3,901
355/250			0,831/0,833	4,455/4,92
400/200			0,788/0,706	4,226/4,215
400/250			0,926/0,896	4,96/5,285
400/315			1,104/1,171	5,912/6,822
500/250			1,136/1,04	6,082/6,105
500/315	0,7		1,353/1,342	7,242/7,788
500/400		55/60	1,637/1,832	8,757/10,478
630/315		55/A=60, A1=50	1,678/1,567	8,971/9,062
630/400			2,028/2,105	10,839/12,012
630/500			2,445/2,755	13,045/15,596
800/400		55/60	2,545/2,469	13,562/14,05
800/500			3,058/3,195	16,314/18,015
800/630			3,731/4,255	19,884/23,755
900/500			4,082/3,571	28,99/26,684
900/630			4,854/4,673	34,424/34,711
900/800			5,848/6,329	41,518/46,524
1000/500		100/A=100,	4,505/3,846	32,015/28,709
1000/630	1,0	A1=60	5,348/5	38,004/37,118
1000/800			6,452/6,711	45,821/49,447
1250/630			6,623/5,848	46,953/43,217
1250/800			8/7,752	56,579/56,807
1250/1000		100	9,615/10,638	67,921 /77,937

12

 $Lmin 45^{\circ} = 1,5 D1 + 100mm$ $Lmin 30^{\circ} = 2 D1 + 100mm$

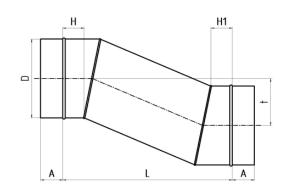
^{*} Обязательно проконсультируйтесь с менеджером

7.10. УТКИ

«Утки» — это специальные фасонные изделия, которые созданы для соединения разноуровневых воздуховодов. Они подходят и для тех воздуховодов, которые находятся правее или левее по отношению друг к другу.

Соотношение размеров D, L, A, t — любое (с учетом технологических ограничений).

2 3 4 5 6 7 8 9


Толщина используемого материала, мм

Цвет покраски по каталогу RAL

РАСШИФРОВКА ОБОЗНАЧЕНИЯ УТКА-315-450-100-30-30-35-ОЦ.-0.5-Н.H-RAL1000

1	Наименование
2	Диаметр D, мм
3	Длина L, мм
4	Смещение t, мм
5	Удлинение Н, мм
6	Удлинение Н1, мм
7	Расстояние до зига А, мм
8	Используемый материал

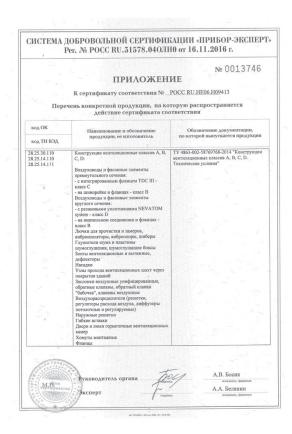
СТАНДАРТНЫЕ ТИПОРАЗМЕРЫ

Тип соединений

9

10

11


D, мм	Толщина материала, мм	А, мм
100		
125		
140		
160		
180	0,5	35
200	0,3	33
225		
250		
280		
315		
355		
400		
450		
500	0,7	55
560	0,7	33
630		
710		
800		
900		
1000	1,0	100
1120	1,0	100
1250		

8. СЕРТИФИКАТ

для заметок	

ДЛЯ ЗАМЕТОК					

TIH	ВТ	Ср	ЧТ	HIT	Co	BC
01	02	03	04	05	06	07
08	09	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30	31	01	02	03	04
05	06	07	08	00	10	11

- 1: Новый год
- 7: Рождество Христово
- 21: ДР НЕВАТОМ Кемерово

АПРЕЛЬ

Пн	Вт	Ср	Чт	Пт	Сб	Вс
01	02	03	04	05	06	07
80	09	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30	01	02	03	04	05
06	07	08	09	10	11	12

- 1: ДР НЕВАТОМ Казань
- 21: ДР НЕВАТОМ Новокузнецк

июль

Пн	Вт	Ср	Чт	Пт	Сб	Вс
01	02	03	04	05	06	07
80	09	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30	31	01	02	03	04
05	06	07	08	09	10	11

- 1: ДР НЕВАТОМ Самара
- 2: ДР НЕВАТОМ Пермь
- 2: ДР НЕВАТОМ Владивосток 6: День монтажника

ОКТЯБРЬ

Пн	Вт	Ср	Чт	Пт	Сб	Вс
30	01	02	03	04	05	06
07	08	09	10	11	12	13
14	15	16	17	18	19	20
21	22	23	24	25	26	27
28	29	30	31	01	02	03
04	05	06	07	08	09	10

10: ДР НЕВАТОМ Санкт-Петербург 16: ДР НЕВАТОМ Улан-Удэ

25: День климатехника

nevatom

ПН	Вт	Ср	Чт	ПТ	C6	Вс
29	30	31	01	02	03	04
05	06	07	80	9	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	28	29	01	02	03
04	05	06	07	08	09	10

7: ДР НЕВАТОМ Омск

23: День защитника Отечества

Пн	Вт	Ср	Чт	Пт	Сб	Вс
					04	
					11	
13	14	15	16	17	18	19
20	21	22	23	24	25	26
27	28	29	30	31	01	02
03	04	05	06	07	08	09

1: Праздник Весны и Труда

9: День Победы 13: ДР НЕВАТОМ Новосибирск 15: ДР НЕВАТОМ Ульяновск

18: ДР НЕВАТОМ Барнаул 31: ДР НЕВАТОМ Набережные Челны

АВГУСТ

Пн	Вт	Ср	Чт	Пт	Сб	Вс
29	30	31	01	02	03	04
05	06	07	80	09	10	11
12	13	14	15	16	17	18
19	20	21	22	23	24	25
26	27	28	29	30	31	01
02	03	04	05	06	07	08

6: ДР НЕВАТОМ Магнитогорск 11: ДР НЕВАТОМ Москва

11: День строителя

НОЯБРЬ

Пн	Вт	Ср	Чт	Пт	Сб	Вс
28	29	30	31	01	02	03
04	05	06	07	80	09	10
11	12	13	14	15	16	17
18	19	20	21	22	23	24
25	26	27	28	29	30	01
02	03	04	05	06	07	08

4: День народного единства 16: День проектировщика 17: ДР НЕВАТОМ Челябинск

MAPT

Пн	Вт	Ср	Чт	Пт	Сб	Вс
26	27	28	29	01	02	03
04	05		07	80	09	10
11	12	13	14	15	16	17
18	19	20	21	22	23	24
25	26	27	28	29	30	31
01	02	03	04	05	06	07

1: ДР НЕВАТОМ Астана 1: ДР НЕВАТОМ Иркутск

8: Международный женский день 11: ДР НЕВАТОМ Тюмень 26: ДР НЕВАТОМ Томск

ИЮНЬ

Пн	Вт	Ср	Чт	Пт	Сб	Вс
27	28	29	30	31	01	02
03	04	05	06	07	80	09
10	11	12	13	14	15	16
		19				
24	25	26	27	28	29	30
01	02	03	04	05	06	07

12: День России

20: ДР НЕВАТОМ Саратов 26: ДР НЕВАТОМ Оренбург

СЕНТЯБРЬ

Пн	Вт	Ср	Чт	Пт	Сб	Вс
26	27	28	29	30	31	01
02	03	04	05	06	07	08
09	10	11	12	13	14	15
16	17	18	19	20	21	22
23	24	25	26	27	28	29
30	01	02	03	04	05	06

10: ДР НЕВАТОМ Сургут 21: ДР НЕВАТОМ Уфа 27: ДР НЕВАТОМ Хабаровак

ДЕКАБРЬ

Пн	Вт	Ср	Чт	Пт	Сб	Вс
25	36	27	28	29	30	01
02	03	04	05	06	07	08
09	10	11	12	13	14	15
			19			
23	24	25	26	27	28	29
30	31	01	02	03	04	05

4: ДР НЕВАТОМ Екатеринбург

7: ДР НЕВАТОМ Алматы 26: ДР НЕВАТОМ Красноярск

КОМПАНИЯ НЕВАТОМ

Новосибирск

630009, ул. Никитина, 20/2, склад, производство: 630126, ул. Выборная, 141 производство: 630126, ул. Выборная, 133/2

Екатеринбург

офис, склад, производство: 620141, ул. Завокзальная, 28

Самара

443004, ул. Водников, 60, оф. 901 склад, производство: 443033, ул. Заводская, 11д

Москва

111123, ул. Плеханова, 4а, оф. 2 111024, ул. Энтузиастов 2-я, 5, корп. 24

Санкт-Петербург 191167, ул. Александра

Невского, 9, оф. 322

197375, ул. Репищева, 14, скл. 25 (АБ)

Барнаул

656064, ул. Сельскохозяйственная, 5, корп. 3

Владивосток

690078, пр. Красного знамени, 3, оф. 8.3 склад:

690062, ул. Днепровская, 25а, стр. 7

Иркутск

664025, ул. Степана Разина, 6, оф. 408А склад: 664005, ул. Иркута Набережная, 1/66

Казань

420087, ул. Аделя Кутуя, 159 корп.1, оф. 105 склад: 420087, ул. Родины, 7 корп. 14

Кемерово

650066, пр. Ленина, 61, оф. 311 650021, ул. Красноармейская, д.13

Красноярск

660075, ул. Маерчака, 16, оф. 804 склад: 660062, ул. Телевизорная, 1, стр. 62

Магнитогорск

склад: 455047, ул. Труда, 42а, стр. 2

Набережные Челны

423800, ул. Производственный проезд, 19г

Новокузнецк

654005, ул. Кольцевая, 15, корп. 8, оф. 5

644047, ул. Чернышевского, 23, оф. 25

Оренбург

склад: 460048, пр-д Автоматики, 14/2

Пермь

614000, ул. Луначарского, д. 3/2, оф. 311 склад: 614025, ул. Героев Хасана, 100, корп. 2

Ростов-на-Дону

офис, склад: 346815 ул. 1-й километр трассы Ростов-Новошахтинск, стр. 7/4

Саратов

склад: 410003, ул. Кооперативная, 100а

Сургут

склад: 628401, ул. Глухова, 12

634028, ул. Тимакова, 21, стр. 1

Тюмень

625007, ул. Николая Федорова, 6 корп. 1, оф. 3 склал: 625007, ул. 30 лет Победы, 7, стр. 9

Улан-Удэ

670042, ул. Жердева, 20, оф. 4 склад: 660062, ул. Домостроительная, 2Б, скл. 15

Ульяновск

склад: 432008, ул. Маслова, 3, Московское шоссе, 78а

Уфа

450071, ул. Менделеева 229/1, эт. 1 склад: 450112, ул. Цветочная, д. 7/4

Хабаровск

680014, ул. Иркусткая, 6, оф. 306Б 680014, ул. Иркутская, 6, скл. 5А-1

Челябинск

454007, ул. Российская, 110, корп. 2, оф. 303 склад 454008, ул. Свердловский тракт, 5, стр. 1, скл. 9

Астана

+7 717 264 28 40 пр. Кабанбай Батыра 2/2, оф. 411 склад: ул. Жаңажол, 19/1а

Алматы

+7 727 341 07 65 ул. Айтеке би, 187, оф. 407 склад: ул. Бродского, 37/1

Единый номер по РФ: +7-804-700-1400

nevatom.ru zakaz@nevatom.ru