В октябре 1975 года на научной сессии в честь 250-летия Академии наук СССР академик Петр Капица, ставший тремя годами позже лауреатом Нобелевской премии по физике, сделал концептуальный доклад, в котором на основании базовых физических принципов доказал промышленную неэффективность всех видов альтернативной энергетики, за исключением управляемого термоядерного синтеза.

Что же было основным аргументом Петра Леонидовича в скептическом отношении к энергии ветра и солнца? И насколько изменилось наше представление об альтернативной энергетике за прошедшие сорок с лишним лет?

 

Что предсказал Капица

Основным аргументом, который использовал Капица в своем докладе о возможностях альтернативной энергетики, был отнюдь не экономический подход, но соображения физического характера. Главным его возражением против безудержного увлечения модными даже тогда, сорок лет назад, концепциями «бесплатной и экологически чистой альтернативной энергетики» было очевидное ограничение, которое не разрешено и по сей день: ни один из альтернативных источников энергии, будь то солнечные батареи, ветряные электростанции или же водородные топливные элементы, так и не достиг плотностей энергии и мощности, которые обеспечиваются таким ископаемым топливом, как уголь, нефть и газ или же атомной энергетикой.

К сожалению, такого рода ограничение носит не политический, но именно физический характер — вне зависимости от государственного строя или выбранной в стране идеологии, любой экономике приходится в той или иной степени базироваться именно на физических законах окружающего нас мира. Усилия ученых или инженеров могут достаточно близко приблизить нас к теоретическому физическому пределу той или иной технологии, но, увы, абсолютно бесполезны в попытке перепрыгнуть через такого рода ограничитель.

Так, например, лимитирующей константой для солнечной энергетики является так называемая «солнечная постоянная», которая составляет 1367 Вт на квадратный метр на орбите нашей Земли. К сожалению, этот «орбитальный киловатт» совершенно недоступен для нас, обитающих на земной поверхности. На количестве достигающей поверхности Земли солнечной энергии сказывается масса факторов: погода, общая прозрачность атмосферы, облака и туман, высота Солнца над горизонтом.

Но что самое главное — вращение нашей планеты вокруг своей оси, которое сразу же уменьшает доступную энергию солнечной постоянной практически вдвое: ночью Солнце находится ниже линии горизонта. В итоге нам, жителям Земли, приходится довольствоваться максимум десятой частью орбитальной солнечной постоянной.

Те же проблемы преследуют и еще один краеугольный камень возобновляемой энергетики — технологию водородных топливных элементов. Они предполагались дешевой заменой тяжелым, экологически небезопасным и неэффективным химическим аккумуляторам.

Петр Капица писал: «На практике плотность потока энергии очень мала, и с квадратного метра электрода можно снимать только 200 Вт. Для 100 мегаватт мощности рабочая площадь электродов достигает квадратного километра, и нет надежды, что капитальные затраты на построение такой электростанции оправдаются генерируемой ею энергией. Значит, топливные элементы можно использовать только там, где не нужны большие мощности. Но для макроэнергетики они бесполезны».

 

Мы наш, мы новый мир построим!

Результатом ограничителей солнечной энергетики стало знание, хорошо доступное еще в 1975 году: реально с одного метра земной поверхности можно собрать не более 100–200 Ватт усредненной суточной мощности солнечной энергии. Иными словами, для удовлетворения даже текущих потребностей человечества площадь солнечных электростанций, размещенных на поверхности Земли, оказывалась бы просто громадной.

Кроме того, для размещения солнечных батарей наиболее подходящей была бы полоска земной поверхности вдоль земного экватора — или же в пустынных тропических районах, в то время как большая часть потребителей солнечной энергии находится в умеренном поясе Северного полушария. Как следствие, абстрактные «квадратики» солнечных батарей в Сахаре, которые так любят рисовать апологеты беспредельной солнечной энергии, оказываются не более чем виртуальным допущением.

Но это отнюдь не остановило тех, кто недостаточно полно усвоил школьный курс физики. Проекты по солнечному освоению Сахары возникали и возникают с завидной регулярностью.

К примеру, основанная в 2003 году европейская компания Desertec, которая пыталась осуществить мегапроект строительства солнечных электростанций в Тунисе, Ливии и Египте для поставок солнечной электроэнергии в Западную Европу, несмотря на участие в проекте таких крупных корпораций и банков, как Siemens, Bosch, ABB и Deutche Bank, десять лет спустя, в 2013 году, тихо обанкротилась. Оказалось, что стоимость постройки и обслуживания электростанций в Сахаре и цена транспортировки электроэнергии за тысячи километров, даже при «бесплатной» солнечной постоянной в Сахаре, не омрачаемой тучами или туманами, оказалась просто запредельной.

Не более радужно обстоят дела и с солнечной электроэнергетикой в самой Западной Европе, в которой вот уже второе десятилетие подряд различными странами и фондами выделяются триллионы долларов на развитие солнечной и ветряной энергетики. Несмотря на «золотой дождь», который обильно пролился на сектор возобновляемых источников энергии (ВИЭ) и на всемерную политическую поддержку возобновляемой энергетики (даже за счет насильного закрытия АЭС и угольных ТЭС), «промежуточный финиш» для ВИЭ по состоянию на 2016 год отнюдь не столь впечатляющ.

Так, к 2015 году Германия и Дания, установившие у себя максимальное количество ветряков и солнечных батарей, имели и самые высокие цены на электроэнергию — 29,5 евроцента и 30,4 евроцента за кВт-час. В то же время «отсталые» в плане установки ВИЭ Болгария и Венгрия, в которых еще во времена СССР были построены мощные АЭС, могли похвастаться совсем иными расценками на электроэнергию — соответственно 9,6 и 11,5 евроцента за кВт-час.

Сегодня речь идет о том, что амбициозную программу «2020» по ВИЭ, которую принял Евросоюз и согласно которой к 2020 году 20% электроэнергии в странах ЕС должно производится из возобновляемых источников, возложили на плечи европейских налогоплательщиков, которых и подписали к оплате специально завышенного тарифа на электроэнергию. Достаточно сказать, что, в пересчете на российские реалии, немцы и датчане платят 20–21 рубль за каждый потребленный киловатт-час).

Поэтому и получается, что нынешние успехи ВИЭ связаны не с экономическими реалиями их выгодности и даже не с впечатляющим прогрессом в совершенствовании КПД или уменьшении их стоимости производства и обслуживания, но в первую очередь — с протекционистской политикой стран ЕС по отношению к ВИЭ и устранением любой конкуренции со стороны тепловой или атомной энергетики, подвергающейся дополнительному налоговому прессу (сборам за выбросы углекислого газа), а то и прямому запрету (как атомная энергетика в Германии).

 

ИСТОЧНИК и ПОЛНЫЙ ТЕКСТ